磁场阶跃下的半经典特征值估计

IF 1.8 1区 数学 Q1 MATHEMATICS
Wafaa Assaad, Bernard Helffer, Ayman Kachmar
{"title":"磁场阶跃下的半经典特征值估计","authors":"Wafaa Assaad, Bernard Helffer, Ayman Kachmar","doi":"10.2140/apde.2024.17.535","DOIUrl":null,"url":null,"abstract":"<p>We establish accurate eigenvalue asymptotics and, as a by-product, sharp estimates of the splitting between two consecutive eigenvalues for the Dirichlet magnetic Laplacian with a nonuniform magnetic field having a jump discontinuity along a smooth curve. The asymptotics hold in the semiclassical limit, which also corresponds to a large magnetic field limit and is valid under a geometric assumption on the curvature of the discontinuity curve. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiclassical eigenvalue estimates under magnetic steps\",\"authors\":\"Wafaa Assaad, Bernard Helffer, Ayman Kachmar\",\"doi\":\"10.2140/apde.2024.17.535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish accurate eigenvalue asymptotics and, as a by-product, sharp estimates of the splitting between two consecutive eigenvalues for the Dirichlet magnetic Laplacian with a nonuniform magnetic field having a jump discontinuity along a smooth curve. The asymptotics hold in the semiclassical limit, which also corresponds to a large magnetic field limit and is valid under a geometric assumption on the curvature of the discontinuity curve. </p>\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.535\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.535","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了精确的特征值渐近线,并作为副产品,对沿光滑曲线具有跳跃不连续性的非均匀磁场的狄利克特磁拉普拉契方程的两个连续特征值之间的分裂进行了尖锐估计。渐近线在半经典极限中成立,这也对应于大磁场极限,并且在不连续曲线曲率的几何假设下有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semiclassical eigenvalue estimates under magnetic steps

We establish accurate eigenvalue asymptotics and, as a by-product, sharp estimates of the splitting between two consecutive eigenvalues for the Dirichlet magnetic Laplacian with a nonuniform magnetic field having a jump discontinuity along a smooth curve. The asymptotics hold in the semiclassical limit, which also corresponds to a large magnetic field limit and is valid under a geometric assumption on the curvature of the discontinuity curve.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信