有限状态相对维度、A. P. 子序列维度和有限状态范兰巴根定理

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Satyadev Nandakumar, Subin Pulari, Akhil S
{"title":"有限状态相对维度、A. P. 子序列维度和有限状态范兰巴根定理","authors":"Satyadev Nandakumar,&nbsp;Subin Pulari,&nbsp;Akhil S","doi":"10.1016/j.ic.2024.105156","DOIUrl":null,"url":null,"abstract":"<div><p>Finite-state dimension, introduced by Dai, Lathrop, Lutz and Mayordomo quantifies the information rate in an infinite sequence as measured by finite-state automata. In this paper, we define a relative version of finite-state dimension. The finite-state relative dimension <span><math><msubsup><mrow><mi>dim</mi></mrow><mrow><mi>F</mi><mi>S</mi></mrow><mrow><mi>Y</mi></mrow></msubsup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> of a sequence <em>X</em> relative to <em>Y</em> is the finite-state dimension of <em>X</em> measured using the class of finite-state gamblers with oracle access to <em>Y</em>. We show its mathematical robustness by equivalently characterizing this notion using the relative block entropy rate of <em>X</em> conditioned on <em>Y</em>.</p><p>We derive inequalities relating the dimension of a sequence to the relative dimension of its subsequences along any arithmetic progression (A. P.). These enable us to obtain a strengthening of Wall's Theorem on the normality of A. P. subsequences of a normal sequence, in terms of relative dimension. In contrast to the original theorem, this stronger version has an exact converse yielding a new characterization of normality.</p><p>We also obtain finite-state analogues of van Lambalgen's theorem on the symmetry of relative normality.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"298 ","pages":"Article 105156"},"PeriodicalIF":0.8000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-state relative dimension, dimensions of A. P. subsequences and a finite-state van Lambalgen's theorem\",\"authors\":\"Satyadev Nandakumar,&nbsp;Subin Pulari,&nbsp;Akhil S\",\"doi\":\"10.1016/j.ic.2024.105156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Finite-state dimension, introduced by Dai, Lathrop, Lutz and Mayordomo quantifies the information rate in an infinite sequence as measured by finite-state automata. In this paper, we define a relative version of finite-state dimension. The finite-state relative dimension <span><math><msubsup><mrow><mi>dim</mi></mrow><mrow><mi>F</mi><mi>S</mi></mrow><mrow><mi>Y</mi></mrow></msubsup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> of a sequence <em>X</em> relative to <em>Y</em> is the finite-state dimension of <em>X</em> measured using the class of finite-state gamblers with oracle access to <em>Y</em>. We show its mathematical robustness by equivalently characterizing this notion using the relative block entropy rate of <em>X</em> conditioned on <em>Y</em>.</p><p>We derive inequalities relating the dimension of a sequence to the relative dimension of its subsequences along any arithmetic progression (A. P.). These enable us to obtain a strengthening of Wall's Theorem on the normality of A. P. subsequences of a normal sequence, in terms of relative dimension. In contrast to the original theorem, this stronger version has an exact converse yielding a new characterization of normality.</p><p>We also obtain finite-state analogues of van Lambalgen's theorem on the symmetry of relative normality.</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"298 \",\"pages\":\"Article 105156\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089054012400021X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089054012400021X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

有限状态维度由 Dai、Lathrop、Lutz 和 Mayordomo 提出,它量化了有限状态自动机测量的无限序列中的信息率。本文定义了有限状态维度的相对版本。序列相对于的有限状态相对维度,是使用具有甲骨文访问权限的有限状态赌徒类来测量的有限状态维度。 我们通过使用以......为条件的......相对块熵率来等价描述这一概念,证明了它在数学上的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite-state relative dimension, dimensions of A. P. subsequences and a finite-state van Lambalgen's theorem

Finite-state dimension, introduced by Dai, Lathrop, Lutz and Mayordomo quantifies the information rate in an infinite sequence as measured by finite-state automata. In this paper, we define a relative version of finite-state dimension. The finite-state relative dimension dimFSY(X) of a sequence X relative to Y is the finite-state dimension of X measured using the class of finite-state gamblers with oracle access to Y. We show its mathematical robustness by equivalently characterizing this notion using the relative block entropy rate of X conditioned on Y.

We derive inequalities relating the dimension of a sequence to the relative dimension of its subsequences along any arithmetic progression (A. P.). These enable us to obtain a strengthening of Wall's Theorem on the normality of A. P. subsequences of a normal sequence, in terms of relative dimension. In contrast to the original theorem, this stronger version has an exact converse yielding a new characterization of normality.

We also obtain finite-state analogues of van Lambalgen's theorem on the symmetry of relative normality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信