关于超临界二次波方程的炸毁问题

IF 1.8 1区 数学 Q1 MATHEMATICS
Elek Csobo, Irfan Glogić, Birgit Schörkhuber
{"title":"关于超临界二次波方程的炸毁问题","authors":"Elek Csobo, Irfan Glogić, Birgit Schörkhuber","doi":"10.2140/apde.2024.17.617","DOIUrl":null,"url":null,"abstract":"<p>We study singularity formation for the quadratic wave equation in the energy supercritical case, i.e., for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi>\n<mo>≥</mo> <mn>7</mn></math>. We find in closed form a new, nontrivial, radial, self-similar blow-up solution <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>u</mi></mrow><mrow><mo>∗</mo></mrow></msup></math> which exists for all <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi>\n<mo>≥</mo> <mn>7</mn></math>. For <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi>\n<mo>=</mo> <mn>9</mn></math>, we study the stability of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>u</mi></mrow><mrow><mo>∗</mo></mrow></msup></math> without any symmetry assumptions on the initial data and show that there is a family of perturbations which lead to blowup via <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>u</mi></mrow><mrow><mo>∗</mo></mrow></msup> </math>. In similarity coordinates, this family represents a codimension-1 Lipschitz manifold modulo translation symmetries. The stability analysis relies on delicate spectral analysis for a non-self-adjoint operator. In addition, in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi>\n<mo>=</mo> <mn>7</mn></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi>\n<mo>=</mo> <mn>9</mn></math>, we prove nonradial stability of the well-known ODE blow-up solution. Also, for the first time we establish persistence of regularity for the wave equation in similarity coordinates. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"21 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On blowup for the supercritical quadratic wave equation\",\"authors\":\"Elek Csobo, Irfan Glogić, Birgit Schörkhuber\",\"doi\":\"10.2140/apde.2024.17.617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study singularity formation for the quadratic wave equation in the energy supercritical case, i.e., for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi>\\n<mo>≥</mo> <mn>7</mn></math>. We find in closed form a new, nontrivial, radial, self-similar blow-up solution <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>u</mi></mrow><mrow><mo>∗</mo></mrow></msup></math> which exists for all <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi>\\n<mo>≥</mo> <mn>7</mn></math>. For <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi>\\n<mo>=</mo> <mn>9</mn></math>, we study the stability of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>u</mi></mrow><mrow><mo>∗</mo></mrow></msup></math> without any symmetry assumptions on the initial data and show that there is a family of perturbations which lead to blowup via <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>u</mi></mrow><mrow><mo>∗</mo></mrow></msup> </math>. In similarity coordinates, this family represents a codimension-1 Lipschitz manifold modulo translation symmetries. The stability analysis relies on delicate spectral analysis for a non-self-adjoint operator. In addition, in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi>\\n<mo>=</mo> <mn>7</mn></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi>\\n<mo>=</mo> <mn>9</mn></math>, we prove nonradial stability of the well-known ODE blow-up solution. Also, for the first time we establish persistence of regularity for the wave equation in similarity coordinates. </p>\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.617\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.617","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了能量超临界情况下,即 d≥ 7 时二次波方程奇点的形成。我们以闭合形式发现了一个新的、非微观的、径向的、自相似的炸毁解 u∗,它在所有 d≥ 7 时都存在。对于 d= 9,我们在不对初始数据作任何对称性假设的情况下研究了 u∗ 的稳定性,结果表明存在一个通过 u∗ 导致炸毁的扰动族。在相似性坐标中,这个族代表了一个标度为 1 的 Lipschitz 流形,模数为平移对称性。稳定性分析依赖于对非自交算子的微妙谱分析。此外,在 d= 7 和 d= 9 条件下,我们证明了著名的 ODE 吹胀解的非径向稳定性。此外,我们还首次建立了相似坐标下波方程的持续正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On blowup for the supercritical quadratic wave equation

We study singularity formation for the quadratic wave equation in the energy supercritical case, i.e., for d 7. We find in closed form a new, nontrivial, radial, self-similar blow-up solution u which exists for all d 7. For d = 9, we study the stability of u without any symmetry assumptions on the initial data and show that there is a family of perturbations which lead to blowup via u . In similarity coordinates, this family represents a codimension-1 Lipschitz manifold modulo translation symmetries. The stability analysis relies on delicate spectral analysis for a non-self-adjoint operator. In addition, in d = 7 and d = 9, we prove nonradial stability of the well-known ODE blow-up solution. Also, for the first time we establish persistence of regularity for the wave equation in similarity coordinates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信