{"title":"关于超临界二次波方程的炸毁问题","authors":"Elek Csobo, Irfan Glogić, Birgit Schörkhuber","doi":"10.2140/apde.2024.17.617","DOIUrl":null,"url":null,"abstract":"<p>We study singularity formation for the quadratic wave equation in the energy supercritical case, i.e., for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi>\n<mo>≥</mo> <mn>7</mn></math>. We find in closed form a new, nontrivial, radial, self-similar blow-up solution <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>u</mi></mrow><mrow><mo>∗</mo></mrow></msup></math> which exists for all <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi>\n<mo>≥</mo> <mn>7</mn></math>. For <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi>\n<mo>=</mo> <mn>9</mn></math>, we study the stability of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>u</mi></mrow><mrow><mo>∗</mo></mrow></msup></math> without any symmetry assumptions on the initial data and show that there is a family of perturbations which lead to blowup via <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>u</mi></mrow><mrow><mo>∗</mo></mrow></msup> </math>. In similarity coordinates, this family represents a codimension-1 Lipschitz manifold modulo translation symmetries. The stability analysis relies on delicate spectral analysis for a non-self-adjoint operator. In addition, in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi>\n<mo>=</mo> <mn>7</mn></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi>\n<mo>=</mo> <mn>9</mn></math>, we prove nonradial stability of the well-known ODE blow-up solution. Also, for the first time we establish persistence of regularity for the wave equation in similarity coordinates. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"21 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On blowup for the supercritical quadratic wave equation\",\"authors\":\"Elek Csobo, Irfan Glogić, Birgit Schörkhuber\",\"doi\":\"10.2140/apde.2024.17.617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study singularity formation for the quadratic wave equation in the energy supercritical case, i.e., for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi>\\n<mo>≥</mo> <mn>7</mn></math>. We find in closed form a new, nontrivial, radial, self-similar blow-up solution <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>u</mi></mrow><mrow><mo>∗</mo></mrow></msup></math> which exists for all <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi>\\n<mo>≥</mo> <mn>7</mn></math>. For <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi>\\n<mo>=</mo> <mn>9</mn></math>, we study the stability of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>u</mi></mrow><mrow><mo>∗</mo></mrow></msup></math> without any symmetry assumptions on the initial data and show that there is a family of perturbations which lead to blowup via <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>u</mi></mrow><mrow><mo>∗</mo></mrow></msup> </math>. In similarity coordinates, this family represents a codimension-1 Lipschitz manifold modulo translation symmetries. The stability analysis relies on delicate spectral analysis for a non-self-adjoint operator. In addition, in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi>\\n<mo>=</mo> <mn>7</mn></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi>\\n<mo>=</mo> <mn>9</mn></math>, we prove nonradial stability of the well-known ODE blow-up solution. Also, for the first time we establish persistence of regularity for the wave equation in similarity coordinates. </p>\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.617\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.617","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On blowup for the supercritical quadratic wave equation
We study singularity formation for the quadratic wave equation in the energy supercritical case, i.e., for . We find in closed form a new, nontrivial, radial, self-similar blow-up solution which exists for all . For , we study the stability of without any symmetry assumptions on the initial data and show that there is a family of perturbations which lead to blowup via . In similarity coordinates, this family represents a codimension-1 Lipschitz manifold modulo translation symmetries. The stability analysis relies on delicate spectral analysis for a non-self-adjoint operator. In addition, in and , we prove nonradial stability of the well-known ODE blow-up solution. Also, for the first time we establish persistence of regularity for the wave equation in similarity coordinates.
期刊介绍:
APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.