统一岔道属性和奇异极限

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Martín Hernández, Enrique Zuazua
{"title":"统一岔道属性和奇异极限","authors":"Martín Hernández,&nbsp;Enrique Zuazua","doi":"10.1007/s10440-024-00640-7","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by singular limits for long-time optimal control problems, we investigate a class of parameter-dependent parabolic equations. First, we prove a turnpike result, uniform with respect to the parameters within a suitable regularity class and under appropriate bounds. The main ingredient of our proof is the justification of the uniform exponential stabilization of the corresponding Riccati equations, which is derived from the uniform null control properties of the model.</p><p>Then, we focus on a heat equation with rapidly oscillating coefficients. In the one-dimensional setting, we obtain a uniform turnpike property with respect to the highly oscillatory heterogeneous medium. Afterward, we establish the homogenization of the turnpike property. Finally, our results are validated by numerical experiments.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"190 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10440-024-00640-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Uniform Turnpike Property and Singular Limits\",\"authors\":\"Martín Hernández,&nbsp;Enrique Zuazua\",\"doi\":\"10.1007/s10440-024-00640-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Motivated by singular limits for long-time optimal control problems, we investigate a class of parameter-dependent parabolic equations. First, we prove a turnpike result, uniform with respect to the parameters within a suitable regularity class and under appropriate bounds. The main ingredient of our proof is the justification of the uniform exponential stabilization of the corresponding Riccati equations, which is derived from the uniform null control properties of the model.</p><p>Then, we focus on a heat equation with rapidly oscillating coefficients. In the one-dimensional setting, we obtain a uniform turnpike property with respect to the highly oscillatory heterogeneous medium. Afterward, we establish the homogenization of the turnpike property. Finally, our results are validated by numerical experiments.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"190 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10440-024-00640-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00640-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00640-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

受长时间最优控制问题奇异极限的启发,我们研究了一类与参数相关的抛物方程。首先,我们证明了一个转折结果,该结果在适当的正则类别内和适当的约束条件下与参数相关是统一的。我们证明的主要内容是相应 Riccati 方程的统一指数稳定化的理由,该理由来自模型的统一空控制特性。然后,我们将重点放在一个具有快速振荡系数的热方程上。在一维背景下,我们得到了关于高振荡异质介质的均匀岔道特性。随后,我们建立了岔道特性的同质化。最后,我们的结果得到了数值实验的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Uniform Turnpike Property and Singular Limits

Uniform Turnpike Property and Singular Limits

Motivated by singular limits for long-time optimal control problems, we investigate a class of parameter-dependent parabolic equations. First, we prove a turnpike result, uniform with respect to the parameters within a suitable regularity class and under appropriate bounds. The main ingredient of our proof is the justification of the uniform exponential stabilization of the corresponding Riccati equations, which is derived from the uniform null control properties of the model.

Then, we focus on a heat equation with rapidly oscillating coefficients. In the one-dimensional setting, we obtain a uniform turnpike property with respect to the highly oscillatory heterogeneous medium. Afterward, we establish the homogenization of the turnpike property. Finally, our results are validated by numerical experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信