奇数强度球形设计达到法泽卡斯-列文斯丹边界的覆盖和普遍最小电位

Pub Date : 2024-03-06 DOI:10.1007/s00010-024-01036-6
Sergiy Borodachov
{"title":"奇数强度球形设计达到法泽卡斯-列文斯丹边界的覆盖和普遍最小电位","authors":"Sergiy Borodachov","doi":"10.1007/s00010-024-01036-6","DOIUrl":null,"url":null,"abstract":"<div><p>We characterize the cases of existence of spherical designs of an odd strength attaining the Fazekas–Levenshtein bound for covering and prove some of their properties. We also find all universal minima of the potential of regular spherical configurations in two new cases: the demihypercube on <span>\\(S^d\\)</span>, <span>\\(d\\ge 4\\)</span>, and the <span>\\(2_{41}\\)</span> polytope on <span>\\(S^7\\)</span> (which is dual to the <span>\\(E_8\\)</span> lattice).\n</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01036-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Odd strength spherical designs attaining the Fazekas–Levenshtein bound for covering and universal minima of potentials\",\"authors\":\"Sergiy Borodachov\",\"doi\":\"10.1007/s00010-024-01036-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We characterize the cases of existence of spherical designs of an odd strength attaining the Fazekas–Levenshtein bound for covering and prove some of their properties. We also find all universal minima of the potential of regular spherical configurations in two new cases: the demihypercube on <span>\\\\(S^d\\\\)</span>, <span>\\\\(d\\\\ge 4\\\\)</span>, and the <span>\\\\(2_{41}\\\\)</span> polytope on <span>\\\\(S^7\\\\)</span> (which is dual to the <span>\\\\(E_8\\\\)</span> lattice).\\n</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00010-024-01036-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01036-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01036-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了达到法泽卡斯-列文森斯坦(Fazekas-Levenshtein)覆盖边界的奇数强度球形设计的存在情况,并证明了它们的一些性质。我们还发现了两种新情况下规则球形配置的势的所有普遍最小值:\(S^d\)上的\(d\ge 4\) 半超立方体,以及\(S^7\)上的\(2_{41}\)多面体(它与\(E_8\)网格是对偶的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Odd strength spherical designs attaining the Fazekas–Levenshtein bound for covering and universal minima of potentials

We characterize the cases of existence of spherical designs of an odd strength attaining the Fazekas–Levenshtein bound for covering and prove some of their properties. We also find all universal minima of the potential of regular spherical configurations in two new cases: the demihypercube on \(S^d\), \(d\ge 4\), and the \(2_{41}\) polytope on \(S^7\) (which is dual to the \(E_8\) lattice).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信