Yu. A. Kupryakov, K. V. Bychkov, O. M. Belova, A. B. Gorshkov, P. Kotrč
{"title":"对爆发性突起的光谱观测模拟","authors":"Yu. A. Kupryakov, K. V. Bychkov, O. M. Belova, A. B. Gorshkov, P. Kotrč","doi":"10.1134/S0016793223600881","DOIUrl":null,"url":null,"abstract":"<p>The paper presents the results of an analysis of observations of an eruptive prominence on the MFS and HSFA2 spectrographs of the Ondřejov Observatory (Astronomical Institute, Czech Republic) in the hydrogen, helium, and calcium lines. After spectral processing, the integral radiation fluxes in the lines were determined and the physical parameters of the plasma were calculated theoretically using a model in the absence of local thermodynamic equilibrium. Comparison of the observed and calculated values showed that the observed radiation fluxes in the lines can be explained in a model of stationary gas radiation taking into account the opacity in the spectral lines. To calculate the theoretical fluxes, in some cases, it was necessary to introduce radiation from several layers with different temperatures and heights. The calculated radiation fluxes agree with the observed ones to within 10%. As a result of the simulation, the main parameters of the plasma of the prominence were obtained: temperature, concentration, etc. The values of the radiation fluxes in the spectral lines are evidence of inhomogeneity of the emitting gas, and there may be regions next to each other with temperatures differing by an order of magnitude.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 1","pages":"19 - 23"},"PeriodicalIF":0.7000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Spectral Observations of an Eruptive Prominence\",\"authors\":\"Yu. A. Kupryakov, K. V. Bychkov, O. M. Belova, A. B. Gorshkov, P. Kotrč\",\"doi\":\"10.1134/S0016793223600881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper presents the results of an analysis of observations of an eruptive prominence on the MFS and HSFA2 spectrographs of the Ondřejov Observatory (Astronomical Institute, Czech Republic) in the hydrogen, helium, and calcium lines. After spectral processing, the integral radiation fluxes in the lines were determined and the physical parameters of the plasma were calculated theoretically using a model in the absence of local thermodynamic equilibrium. Comparison of the observed and calculated values showed that the observed radiation fluxes in the lines can be explained in a model of stationary gas radiation taking into account the opacity in the spectral lines. To calculate the theoretical fluxes, in some cases, it was necessary to introduce radiation from several layers with different temperatures and heights. The calculated radiation fluxes agree with the observed ones to within 10%. As a result of the simulation, the main parameters of the plasma of the prominence were obtained: temperature, concentration, etc. The values of the radiation fluxes in the spectral lines are evidence of inhomogeneity of the emitting gas, and there may be regions next to each other with temperatures differing by an order of magnitude.</p>\",\"PeriodicalId\":55597,\"journal\":{\"name\":\"Geomagnetism and Aeronomy\",\"volume\":\"64 1\",\"pages\":\"19 - 23\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomagnetism and Aeronomy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016793223600881\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793223600881","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Simulation of Spectral Observations of an Eruptive Prominence
The paper presents the results of an analysis of observations of an eruptive prominence on the MFS and HSFA2 spectrographs of the Ondřejov Observatory (Astronomical Institute, Czech Republic) in the hydrogen, helium, and calcium lines. After spectral processing, the integral radiation fluxes in the lines were determined and the physical parameters of the plasma were calculated theoretically using a model in the absence of local thermodynamic equilibrium. Comparison of the observed and calculated values showed that the observed radiation fluxes in the lines can be explained in a model of stationary gas radiation taking into account the opacity in the spectral lines. To calculate the theoretical fluxes, in some cases, it was necessary to introduce radiation from several layers with different temperatures and heights. The calculated radiation fluxes agree with the observed ones to within 10%. As a result of the simulation, the main parameters of the plasma of the prominence were obtained: temperature, concentration, etc. The values of the radiation fluxes in the spectral lines are evidence of inhomogeneity of the emitting gas, and there may be regions next to each other with temperatures differing by an order of magnitude.
期刊介绍:
Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.