为嵌入式系统开发基于 STT-MRAM 的高能效近内存计算架构

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yueting Li, Xueyan Wang, He Zhang, Biao Pan, Keni Qiu, Wang Kang, Jun Wang, Weisheng Zhao
{"title":"为嵌入式系统开发基于 STT-MRAM 的高能效近内存计算架构","authors":"Yueting Li, Xueyan Wang, He Zhang, Biao Pan, Keni Qiu, Wang Kang, Jun Wang, Weisheng Zhao","doi":"10.1145/3650729","DOIUrl":null,"url":null,"abstract":"<p>Convolutional Neural Networks (CNNs) have significantly impacted embedded system applications across various domains. However, this exacerbates the real-time processing and hardware resource-constrained challenges of embedded systems. To tackle these issues, we propose spin-transfer torque magnetic random-access memory (STT-MRAM)-based near memory computing (NMC) design for embedded systems. We optimize this design from three aspects: Fast-pipelined STT-MRAM readout scheme provides higher memory bandwidth for NMC design, enhancing real-time processing capability with a non-trivial area overhead. Direct index compression format in conjunction with digital sparse matrix-vector multiplication (SpMV) accelerator supports various matrices of practical applications that alleviate computing resource requirements. Custom NMC instructions and stream converter for NMC systems dynamically adjust available hardware resources for better utilization. Experimental results demonstrate that the memory bandwidth of STT-MRAM achieves 26.7GB/s. Energy consumption and latency improvement of digital SpMV accelerator are up to 64x and 1120x across sparsity matrices spanning from 10% to 99.8%. Single-precision and double-precision elements transmission increased up to 8x and 9.6x, respectively. Furthermore, our design achieves a throughput of up to 15.9x over state-of-the-art designs.</p>","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":"50 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Energy Efficient STT-MRAM-based Near Memory Computing Architecture for Embedded Systems\",\"authors\":\"Yueting Li, Xueyan Wang, He Zhang, Biao Pan, Keni Qiu, Wang Kang, Jun Wang, Weisheng Zhao\",\"doi\":\"10.1145/3650729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Convolutional Neural Networks (CNNs) have significantly impacted embedded system applications across various domains. However, this exacerbates the real-time processing and hardware resource-constrained challenges of embedded systems. To tackle these issues, we propose spin-transfer torque magnetic random-access memory (STT-MRAM)-based near memory computing (NMC) design for embedded systems. We optimize this design from three aspects: Fast-pipelined STT-MRAM readout scheme provides higher memory bandwidth for NMC design, enhancing real-time processing capability with a non-trivial area overhead. Direct index compression format in conjunction with digital sparse matrix-vector multiplication (SpMV) accelerator supports various matrices of practical applications that alleviate computing resource requirements. Custom NMC instructions and stream converter for NMC systems dynamically adjust available hardware resources for better utilization. Experimental results demonstrate that the memory bandwidth of STT-MRAM achieves 26.7GB/s. Energy consumption and latency improvement of digital SpMV accelerator are up to 64x and 1120x across sparsity matrices spanning from 10% to 99.8%. Single-precision and double-precision elements transmission increased up to 8x and 9.6x, respectively. Furthermore, our design achieves a throughput of up to 15.9x over state-of-the-art designs.</p>\",\"PeriodicalId\":50914,\"journal\":{\"name\":\"ACM Transactions on Embedded Computing Systems\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Embedded Computing Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3650729\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3650729","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(CNN)对各个领域的嵌入式系统应用产生了重大影响。然而,这加剧了嵌入式系统的实时处理和硬件资源有限的挑战。为了解决这些问题,我们为嵌入式系统提出了基于自旋转移力矩磁性随机存取存储器(STT-MRAM)的近存计算(NMC)设计。我们从三个方面对这一设计进行了优化:快速管状 STT-MRAM 读出方案为 NMC 设计提供了更高的内存带宽,在不增加面积开销的情况下提高了实时处理能力。直接索引压缩格式与数字稀疏矩阵-矢量乘法(SpMV)加速器相结合,支持实际应用中的各种矩阵,缓解了计算资源需求。为 NMC 系统定制的 NMC 指令和流转换器可动态调整可用硬件资源,以提高利用率。实验结果表明,STT-MRAM 的内存带宽达到了 26.7GB/s。数字 SpMV 加速器的能耗和延迟在稀疏度矩阵从 10% 到 99.8% 的范围内分别提高了 64 倍和 1120 倍。单精度和双精度元素传输分别提高了 8 倍和 9.6 倍。此外,与最先进的设计相比,我们的设计实现了高达 15.9 倍的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Energy Efficient STT-MRAM-based Near Memory Computing Architecture for Embedded Systems

Convolutional Neural Networks (CNNs) have significantly impacted embedded system applications across various domains. However, this exacerbates the real-time processing and hardware resource-constrained challenges of embedded systems. To tackle these issues, we propose spin-transfer torque magnetic random-access memory (STT-MRAM)-based near memory computing (NMC) design for embedded systems. We optimize this design from three aspects: Fast-pipelined STT-MRAM readout scheme provides higher memory bandwidth for NMC design, enhancing real-time processing capability with a non-trivial area overhead. Direct index compression format in conjunction with digital sparse matrix-vector multiplication (SpMV) accelerator supports various matrices of practical applications that alleviate computing resource requirements. Custom NMC instructions and stream converter for NMC systems dynamically adjust available hardware resources for better utilization. Experimental results demonstrate that the memory bandwidth of STT-MRAM achieves 26.7GB/s. Energy consumption and latency improvement of digital SpMV accelerator are up to 64x and 1120x across sparsity matrices spanning from 10% to 99.8%. Single-precision and double-precision elements transmission increased up to 8x and 9.6x, respectively. Furthermore, our design achieves a throughput of up to 15.9x over state-of-the-art designs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Embedded Computing Systems
ACM Transactions on Embedded Computing Systems 工程技术-计算机:软件工程
CiteScore
3.70
自引率
0.00%
发文量
138
审稿时长
6 months
期刊介绍: The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信