Josephine C. Meyer, Gina Passante, Steven J. Pollock, Bethany R. Wilcox
{"title":"美国院校的量子信息科学入门课程:内容覆盖面","authors":"Josephine C. Meyer, Gina Passante, Steven J. Pollock, Bethany R. Wilcox","doi":"10.1140/epjqt/s40507-024-00226-0","DOIUrl":null,"url":null,"abstract":"<div><p>Despite rapid growth of quantum information science (QIS) workforce development initiatives, perceived lack of agreement among faculty on core content has made prior research-based curriculum and assessment development initiatives difficult to scale. To identify areas of consensus on content coverage, we report findings from a survey of N=63 instructors teaching introductory QIS courses at US institutions of higher learning. We identify a subset of content items common across a large fraction (≥ 80%) of introductory QIS courses that are potentially amenable to research-based curriculum development, with an emphasis on foundational skills in mathematics, physics, and engineering. As a further guide for curriculum development, we also examine differences in content coverage by level (undergraduate/graduate) and discipline. Finally, we briefly discuss the implications of our findings for the development of a research-based QIS assessment at the postsecondary level.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00226-0","citationCount":"0","resultStr":"{\"title\":\"Introductory quantum information science coursework at US institutions: content coverage\",\"authors\":\"Josephine C. Meyer, Gina Passante, Steven J. Pollock, Bethany R. Wilcox\",\"doi\":\"10.1140/epjqt/s40507-024-00226-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite rapid growth of quantum information science (QIS) workforce development initiatives, perceived lack of agreement among faculty on core content has made prior research-based curriculum and assessment development initiatives difficult to scale. To identify areas of consensus on content coverage, we report findings from a survey of N=63 instructors teaching introductory QIS courses at US institutions of higher learning. We identify a subset of content items common across a large fraction (≥ 80%) of introductory QIS courses that are potentially amenable to research-based curriculum development, with an emphasis on foundational skills in mathematics, physics, and engineering. As a further guide for curriculum development, we also examine differences in content coverage by level (undergraduate/graduate) and discipline. Finally, we briefly discuss the implications of our findings for the development of a research-based QIS assessment at the postsecondary level.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00226-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-024-00226-0\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00226-0","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Introductory quantum information science coursework at US institutions: content coverage
Despite rapid growth of quantum information science (QIS) workforce development initiatives, perceived lack of agreement among faculty on core content has made prior research-based curriculum and assessment development initiatives difficult to scale. To identify areas of consensus on content coverage, we report findings from a survey of N=63 instructors teaching introductory QIS courses at US institutions of higher learning. We identify a subset of content items common across a large fraction (≥ 80%) of introductory QIS courses that are potentially amenable to research-based curriculum development, with an emphasis on foundational skills in mathematics, physics, and engineering. As a further guide for curriculum development, we also examine differences in content coverage by level (undergraduate/graduate) and discipline. Finally, we briefly discuss the implications of our findings for the development of a research-based QIS assessment at the postsecondary level.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.