V. I. Popova, E. V. Belogub, M. A. Rassomakhin, V. A. Popov, P. V. Khvorov
{"title":"南乌拉尔卡拉巴赫山丘波克隆纳亚山铬铁矿矿物学","authors":"V. I. Popova, E. V. Belogub, M. A. Rassomakhin, V. A. Popov, P. V. Khvorov","doi":"10.1134/s1075701523090052","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Mineral composition of chromitites and host serpentinites from a quarry at Mt. Poklonnaya of the Karabash serpentinite massif is studied using optical and electron microscopy. Along with previously known native osmium and laurite, eight minerals of platinum group elements (MPG) are found. Among them are isoferroplatinum, irarsite, iridium, naldrettite, cuproiridsite, sperrylite, tolovkite, and erlichmannite. It is found that magnesioalumochromite is an early magmatic Cr-spinel, while magnesiochromite and ferrichromite are late magmatic. The earliest native iridium and native osmium are replaced by platinum-group-elements sulfides, arsenides and stibnides. Magnesiochromite is associated with native gold, Ni chalcohenides (gersdorffite, millerite, pentlandite, heaslewoodite) and chalcopyrite. The formation of Cr-magnetite, magnetite, native iron, native nickel, galena, and barite is related to serpentinization. Carbonates (calcite and dolomite), brucite, andradite, sepiolite and an unidentified Ca-silicate formed at the latest stage of serpentinization. Secondary Ni minerals (gaspeite, nepuite, “garnierite”) are most likely products of the latest mineral-forming process.</p>","PeriodicalId":12719,"journal":{"name":"Geology of Ore Deposits","volume":"5 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mineralogy of Chromitites of Mount Poklonnaya of the Karabash Massif, South Urals\",\"authors\":\"V. I. Popova, E. V. Belogub, M. A. Rassomakhin, V. A. Popov, P. V. Khvorov\",\"doi\":\"10.1134/s1075701523090052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Mineral composition of chromitites and host serpentinites from a quarry at Mt. Poklonnaya of the Karabash serpentinite massif is studied using optical and electron microscopy. Along with previously known native osmium and laurite, eight minerals of platinum group elements (MPG) are found. Among them are isoferroplatinum, irarsite, iridium, naldrettite, cuproiridsite, sperrylite, tolovkite, and erlichmannite. It is found that magnesioalumochromite is an early magmatic Cr-spinel, while magnesiochromite and ferrichromite are late magmatic. The earliest native iridium and native osmium are replaced by platinum-group-elements sulfides, arsenides and stibnides. Magnesiochromite is associated with native gold, Ni chalcohenides (gersdorffite, millerite, pentlandite, heaslewoodite) and chalcopyrite. The formation of Cr-magnetite, magnetite, native iron, native nickel, galena, and barite is related to serpentinization. Carbonates (calcite and dolomite), brucite, andradite, sepiolite and an unidentified Ca-silicate formed at the latest stage of serpentinization. Secondary Ni minerals (gaspeite, nepuite, “garnierite”) are most likely products of the latest mineral-forming process.</p>\",\"PeriodicalId\":12719,\"journal\":{\"name\":\"Geology of Ore Deposits\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geology of Ore Deposits\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1134/s1075701523090052\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology of Ore Deposits","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s1075701523090052","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
Mineralogy of Chromitites of Mount Poklonnaya of the Karabash Massif, South Urals
Abstract
Mineral composition of chromitites and host serpentinites from a quarry at Mt. Poklonnaya of the Karabash serpentinite massif is studied using optical and electron microscopy. Along with previously known native osmium and laurite, eight minerals of platinum group elements (MPG) are found. Among them are isoferroplatinum, irarsite, iridium, naldrettite, cuproiridsite, sperrylite, tolovkite, and erlichmannite. It is found that magnesioalumochromite is an early magmatic Cr-spinel, while magnesiochromite and ferrichromite are late magmatic. The earliest native iridium and native osmium are replaced by platinum-group-elements sulfides, arsenides and stibnides. Magnesiochromite is associated with native gold, Ni chalcohenides (gersdorffite, millerite, pentlandite, heaslewoodite) and chalcopyrite. The formation of Cr-magnetite, magnetite, native iron, native nickel, galena, and barite is related to serpentinization. Carbonates (calcite and dolomite), brucite, andradite, sepiolite and an unidentified Ca-silicate formed at the latest stage of serpentinization. Secondary Ni minerals (gaspeite, nepuite, “garnierite”) are most likely products of the latest mineral-forming process.
期刊介绍:
Geology of Ore Deposits is a periodical covering the topic of metallic and nonmetallic mineral deposits, their formation conditions, and spatial and temporal distribution. The journal publishes original scientific articles and reviews on a wide range of problems in theoretical and applied geology. The journal focuses on the following problems: deep geological structure and geodynamic environment of ore formation; distribution pattern of metallogenic zones and mineral deposits; geology and formation environment of large and unique metallic and nonmetallic deposits; mineralogy of metallic and nonmetallic deposits; physicochemical and isotopic characteristics and geochemical environment of ore deposition; evolution of ore-forming systems; radiogeology and radioecology, economic problems in exploring, developing, and mining of ore commodities.