论弱外厚域特征函数的规律性

IF 0.4 4区 数学 Q4 MATHEMATICS
Winfried Sickel
{"title":"论弱外厚域特征函数的规律性","authors":"Winfried Sickel","doi":"10.1134/s0081543823050085","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> Let <span>\\(E\\)</span> be a domain in <span>\\(\\mathbb R^d\\)</span>. We investigate the regularity of the characteristic function <span>\\(\\mathcal X_E\\)</span> depending on the behavior of the <span>\\(\\delta\\)</span>-neighborhoods of the boundary of <span>\\(E\\)</span>. The regularity is measured in terms of the Nikol’skii–Besov and Lizorkin–Triebel spaces. </p>","PeriodicalId":54557,"journal":{"name":"Proceedings of the Steklov Institute of Mathematics","volume":"72 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Regularity of Characteristic Functions of Weakly Exterior Thick Domains\",\"authors\":\"Winfried Sickel\",\"doi\":\"10.1134/s0081543823050085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> Let <span>\\\\(E\\\\)</span> be a domain in <span>\\\\(\\\\mathbb R^d\\\\)</span>. We investigate the regularity of the characteristic function <span>\\\\(\\\\mathcal X_E\\\\)</span> depending on the behavior of the <span>\\\\(\\\\delta\\\\)</span>-neighborhoods of the boundary of <span>\\\\(E\\\\)</span>. The regularity is measured in terms of the Nikol’skii–Besov and Lizorkin–Triebel spaces. </p>\",\"PeriodicalId\":54557,\"journal\":{\"name\":\"Proceedings of the Steklov Institute of Mathematics\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Steklov Institute of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0081543823050085\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Steklov Institute of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543823050085","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Abstract Let \(E\) be a domain in \(\mathbb R^d\).我们研究了特征函数 \(\mathcal X_E\) 的正则性,它取决于 \(E\) 边界的 \(\delta\)-neighborhoods 的行为。正则性是通过尼克尔斯基-贝索夫空间和利佐金-特里贝尔空间来衡量的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Regularity of Characteristic Functions of Weakly Exterior Thick Domains

Abstract

Let \(E\) be a domain in \(\mathbb R^d\). We investigate the regularity of the characteristic function \(\mathcal X_E\) depending on the behavior of the \(\delta\)-neighborhoods of the boundary of \(E\). The regularity is measured in terms of the Nikol’skii–Besov and Lizorkin–Triebel spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the Steklov Institute of Mathematics
Proceedings of the Steklov Institute of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
20.00%
发文量
24
审稿时长
4-8 weeks
期刊介绍: Proceedings of the Steklov Institute of Mathematics is a cover-to-cover translation of the Trudy Matematicheskogo Instituta imeni V.A. Steklova of the Russian Academy of Sciences. Each issue ordinarily contains either one book-length article or a collection of articles pertaining to the same topic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信