随机几何图上的自发同步保证

IF 1.7 4区 数学 Q2 MATHEMATICS, APPLIED
Pedro Abdalla, Afonso S. Bandeira, Clara Invernizzi
{"title":"随机几何图上的自发同步保证","authors":"Pedro Abdalla, Afonso S. Bandeira, Clara Invernizzi","doi":"10.1137/23m1559270","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 779-790, March 2024. <br/> Abstract. The Kuramoto model is a classical mathematical model in the field of nonlinear dynamical systems that describes the evolution of coupled oscillators in a network that may reach a synchronous state. The relationship between the network’s topology and whether the oscillators synchronize is a central question in the field of synchronization, and random graphs are often employed as a proxy for complex networks. On the other hand, the random graphs on which the Kuramoto model is rigorously analyzed in the literature are homogeneous models and fail to capture the underlying geometric structure that appears in several examples. In this work, we leverage tools from random matrix theory, random graphs, and mathematical statistics to prove that the Kuramoto model on a random geometric graph on the sphere synchronizes with probability tending to one as the number of nodes tends to infinity. To the best of our knowledge, this is the first rigorous result for the Kuramoto model on random geometric graphs.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"81 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guarantees for Spontaneous Synchronization on Random Geometric Graphs\",\"authors\":\"Pedro Abdalla, Afonso S. Bandeira, Clara Invernizzi\",\"doi\":\"10.1137/23m1559270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 779-790, March 2024. <br/> Abstract. The Kuramoto model is a classical mathematical model in the field of nonlinear dynamical systems that describes the evolution of coupled oscillators in a network that may reach a synchronous state. The relationship between the network’s topology and whether the oscillators synchronize is a central question in the field of synchronization, and random graphs are often employed as a proxy for complex networks. On the other hand, the random graphs on which the Kuramoto model is rigorously analyzed in the literature are homogeneous models and fail to capture the underlying geometric structure that appears in several examples. In this work, we leverage tools from random matrix theory, random graphs, and mathematical statistics to prove that the Kuramoto model on a random geometric graph on the sphere synchronizes with probability tending to one as the number of nodes tends to infinity. To the best of our knowledge, this is the first rigorous result for the Kuramoto model on random geometric graphs.\",\"PeriodicalId\":49534,\"journal\":{\"name\":\"SIAM Journal on Applied Dynamical Systems\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1559270\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1559270","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 应用动力系统期刊》第 23 卷第 1 期第 779-790 页,2024 年 3 月。 摘要仓本模型是非线性动力系统领域的一个经典数学模型,它描述了网络中耦合振荡器可能达到同步状态的演化过程。网络拓扑结构与振荡器是否同步之间的关系是同步领域的核心问题,随机图经常被用作复杂网络的代表。另一方面,文献中对仓本模型进行严格分析的随机图都是同质模型,无法捕捉到若干实例中出现的潜在几何结构。在这项研究中,我们利用随机矩阵理论、随机图和数理统计的工具,证明了球面随机几何图上的仓本模型在节点数趋于无穷大时,同步概率趋于一。据我们所知,这是第一个关于随机几何图上的仓本模型的严格结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Guarantees for Spontaneous Synchronization on Random Geometric Graphs
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 779-790, March 2024.
Abstract. The Kuramoto model is a classical mathematical model in the field of nonlinear dynamical systems that describes the evolution of coupled oscillators in a network that may reach a synchronous state. The relationship between the network’s topology and whether the oscillators synchronize is a central question in the field of synchronization, and random graphs are often employed as a proxy for complex networks. On the other hand, the random graphs on which the Kuramoto model is rigorously analyzed in the literature are homogeneous models and fail to capture the underlying geometric structure that appears in several examples. In this work, we leverage tools from random matrix theory, random graphs, and mathematical statistics to prove that the Kuramoto model on a random geometric graph on the sphere synchronizes with probability tending to one as the number of nodes tends to infinity. To the best of our knowledge, this is the first rigorous result for the Kuramoto model on random geometric graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems 物理-物理:数学物理
CiteScore
3.60
自引率
4.80%
发文量
74
审稿时长
6 months
期刊介绍: SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信