{"title":"违反洛伦兹背景下有限温度的费米子量子气体","authors":"Rafael L. Junqueira Costa, Rodrigo F. Sobreiro","doi":"10.1209/0295-5075/ad229d","DOIUrl":null,"url":null,"abstract":"<jats:title>Abstract</jats:title> In this work we consider a fermionic quantum gas within a Lorentz-Violating background at finite temperature. We derive the effective action within Path Integral formalism considering the interaction of external electromagnetic field and Lorentz violating background fields with quantum fermions. To introduce the temperature effects, we employ the Matsubara formalism. Comments about the corresponding phenomenology are also made.","PeriodicalId":11738,"journal":{"name":"EPL","volume":"26 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fermionic quantum gas at finite temperature within a Lorentz violating background\",\"authors\":\"Rafael L. Junqueira Costa, Rodrigo F. Sobreiro\",\"doi\":\"10.1209/0295-5075/ad229d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:title>Abstract</jats:title> In this work we consider a fermionic quantum gas within a Lorentz-Violating background at finite temperature. We derive the effective action within Path Integral formalism considering the interaction of external electromagnetic field and Lorentz violating background fields with quantum fermions. To introduce the temperature effects, we employ the Matsubara formalism. Comments about the corresponding phenomenology are also made.\",\"PeriodicalId\":11738,\"journal\":{\"name\":\"EPL\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPL\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1209/0295-5075/ad229d\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad229d","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Fermionic quantum gas at finite temperature within a Lorentz violating background
Abstract In this work we consider a fermionic quantum gas within a Lorentz-Violating background at finite temperature. We derive the effective action within Path Integral formalism considering the interaction of external electromagnetic field and Lorentz violating background fields with quantum fermions. To introduce the temperature effects, we employ the Matsubara formalism. Comments about the corresponding phenomenology are also made.
期刊介绍:
General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology.
Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate).
EPL also publishes Comments on Letters previously published in the Journal.