ZF 及其解释

IF 0.6 2区 数学 Q2 LOGIC
S. Jockwich Martinez , S. Tarafder , G. Venturi
{"title":"ZF 及其解释","authors":"S. Jockwich Martinez ,&nbsp;S. Tarafder ,&nbsp;G. Venturi","doi":"10.1016/j.apal.2024.103427","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we unify the study of classical and non-classical algebra-valued models of set theory, by studying variations of the interpretation functions for = and ∈. Although, these variations coincide with the standard interpretation in Boolean-valued constructions, nonetheless they extend the scope of validity of <span><math><mi>ZF</mi></math></span> to new algebra-valued models. This paper presents, for the first time, non-trivial paraconsistent models of full <span><math><mi>ZF</mi></math></span>. Moreover, due to the validity of Leibniz's law in these structures, we will show how to construct proper models of set theory by quotienting these algebra-valued models with respect to equality, modulo the filter of the designated truth-values.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"175 6","pages":"Article 103427"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168007224000241/pdfft?md5=9d7bf0eef51dc942a71051fb8dfcc3b5&pid=1-s2.0-S0168007224000241-main.pdf","citationCount":"0","resultStr":"{\"title\":\"ZF and its interpretations\",\"authors\":\"S. Jockwich Martinez ,&nbsp;S. Tarafder ,&nbsp;G. Venturi\",\"doi\":\"10.1016/j.apal.2024.103427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we unify the study of classical and non-classical algebra-valued models of set theory, by studying variations of the interpretation functions for = and ∈. Although, these variations coincide with the standard interpretation in Boolean-valued constructions, nonetheless they extend the scope of validity of <span><math><mi>ZF</mi></math></span> to new algebra-valued models. This paper presents, for the first time, non-trivial paraconsistent models of full <span><math><mi>ZF</mi></math></span>. Moreover, due to the validity of Leibniz's law in these structures, we will show how to construct proper models of set theory by quotienting these algebra-valued models with respect to equality, modulo the filter of the designated truth-values.</p></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"175 6\",\"pages\":\"Article 103427\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168007224000241/pdfft?md5=9d7bf0eef51dc942a71051fb8dfcc3b5&pid=1-s2.0-S0168007224000241-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007224000241\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224000241","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们通过研究 = 和 ∈ 的解释函数的变化,将集合论的经典和非经典代数值模型的研究统一起来。尽管这些变化与布尔值构造中的标准解释不谋而合,但它们扩展了新的代数值模型的有效性范围。本文首次提出了全......的非三维准一致模型。此外,由于莱布尼兹定律在这些结构中的有效性,我们将展示如何通过对这些代数值模型进行相等的商,模数化指定真值的过滤器,来构造集合论的适当模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ZF and its interpretations

In this paper, we unify the study of classical and non-classical algebra-valued models of set theory, by studying variations of the interpretation functions for = and ∈. Although, these variations coincide with the standard interpretation in Boolean-valued constructions, nonetheless they extend the scope of validity of ZF to new algebra-valued models. This paper presents, for the first time, non-trivial paraconsistent models of full ZF. Moreover, due to the validity of Leibniz's law in these structures, we will show how to construct proper models of set theory by quotienting these algebra-valued models with respect to equality, modulo the filter of the designated truth-values.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信