无稀土红色发光 La3Ga5SiO14:Mn4+ 磷酸盐的制备与光致发光研究

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Youxin Lou, Yuguo Yang, Zi Yang, Chaofeng Zhu, Haifeng Zhou, Ping Zhao, Xuping Wang
{"title":"无稀土红色发光 La3Ga5SiO14:Mn4+ 磷酸盐的制备与光致发光研究","authors":"Youxin Lou, Yuguo Yang, Zi Yang, Chaofeng Zhu, Haifeng Zhou, Ping Zhao, Xuping Wang","doi":"10.1142/s1793604724500097","DOIUrl":null,"url":null,"abstract":"<p>Given the growing interest in eco-friendly lighting solutions, the use of high-quality phosphors has become integral to the advancement of all-solid white light-emitting diodes (WLEDs). One novel phosphor, La<sub>3</sub>Ga<sub>5</sub>SiO<span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mn>1</mn><mn>4</mn></mrow></msub></math></span><span></span>:Mn<span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>4</mn><mo stretchy=\"false\">+</mo></mrow></msup></math></span><span></span> (LGS), has been successfully synthesized via a high-temperature solid-state reaction. The crystal structure of LGS is classified as belonging to the trigonal phase, with a space group P321. The excitation spectrum exhibits a wide peak within the wavelength range of 280–440 nm. It emits a highly intense red light, with a peak emission occurring at 715 nm within the spectral range of 670–740 nm is attributed to the transition of Mn<span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>4</mn><mo stretchy=\"false\">+</mo></mrow></msup></math></span><span></span> from <sup>4</sup>A<span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mn>2</mn><mstyle><mtext mathvariant=\"normal\">g</mtext></mstyle></mrow></msub></math></span><span></span> to <sup>4</sup>T<span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mn>2</mn><mstyle><mtext mathvariant=\"normal\">g.</mtext></mstyle></mrow></msub></math></span><span></span> LGS:Mn<span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>4</mn><mo stretchy=\"false\">+</mo></mrow></msup></math></span><span></span> demonstrates a favorable quantum efficiency of 16% when doped with a concentration of 0.25 mol% Mn. The decay curve of LGS:Mn<span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>4</mn><mo stretchy=\"false\">+</mo></mrow></msup></math></span><span></span> exhibits a pattern of decreasing lifetime as the dopant concentration increases. Additionally, the LGS:Mn<span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>4</mn><mo stretchy=\"false\">+</mo></mrow></msup></math></span><span></span> products demonstrate a CIE chromaticity of (0.688, 0.2644), which is located within the deep red light region. All the aforementioned findings support the potential application of LGS:Mn<span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>4</mn><mo stretchy=\"false\">+</mo></mrow></msup></math></span><span></span> specimens in WLEDs, thereby contributing to the progress of environmentally friendly and energy-efficient lighting.</p>","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"62 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and photoluminescence study of rare-earth-free red emitting La3Ga5SiO14:Mn4+phosphors\",\"authors\":\"Youxin Lou, Yuguo Yang, Zi Yang, Chaofeng Zhu, Haifeng Zhou, Ping Zhao, Xuping Wang\",\"doi\":\"10.1142/s1793604724500097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given the growing interest in eco-friendly lighting solutions, the use of high-quality phosphors has become integral to the advancement of all-solid white light-emitting diodes (WLEDs). One novel phosphor, La<sub>3</sub>Ga<sub>5</sub>SiO<span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow></mrow><mrow><mn>1</mn><mn>4</mn></mrow></msub></math></span><span></span>:Mn<span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow></mrow><mrow><mn>4</mn><mo stretchy=\\\"false\\\">+</mo></mrow></msup></math></span><span></span> (LGS), has been successfully synthesized via a high-temperature solid-state reaction. The crystal structure of LGS is classified as belonging to the trigonal phase, with a space group P321. The excitation spectrum exhibits a wide peak within the wavelength range of 280–440 nm. It emits a highly intense red light, with a peak emission occurring at 715 nm within the spectral range of 670–740 nm is attributed to the transition of Mn<span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow></mrow><mrow><mn>4</mn><mo stretchy=\\\"false\\\">+</mo></mrow></msup></math></span><span></span> from <sup>4</sup>A<span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow></mrow><mrow><mn>2</mn><mstyle><mtext mathvariant=\\\"normal\\\">g</mtext></mstyle></mrow></msub></math></span><span></span> to <sup>4</sup>T<span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow></mrow><mrow><mn>2</mn><mstyle><mtext mathvariant=\\\"normal\\\">g.</mtext></mstyle></mrow></msub></math></span><span></span> LGS:Mn<span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow></mrow><mrow><mn>4</mn><mo stretchy=\\\"false\\\">+</mo></mrow></msup></math></span><span></span> demonstrates a favorable quantum efficiency of 16% when doped with a concentration of 0.25 mol% Mn. The decay curve of LGS:Mn<span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow></mrow><mrow><mn>4</mn><mo stretchy=\\\"false\\\">+</mo></mrow></msup></math></span><span></span> exhibits a pattern of decreasing lifetime as the dopant concentration increases. Additionally, the LGS:Mn<span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow></mrow><mrow><mn>4</mn><mo stretchy=\\\"false\\\">+</mo></mrow></msup></math></span><span></span> products demonstrate a CIE chromaticity of (0.688, 0.2644), which is located within the deep red light region. All the aforementioned findings support the potential application of LGS:Mn<span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow></mrow><mrow><mn>4</mn><mo stretchy=\\\"false\\\">+</mo></mrow></msup></math></span><span></span> specimens in WLEDs, thereby contributing to the progress of environmentally friendly and energy-efficient lighting.</p>\",\"PeriodicalId\":12701,\"journal\":{\"name\":\"Functional Materials Letters\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793604724500097\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1142/s1793604724500097","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

鉴于人们对环保照明解决方案的兴趣与日俱增,使用高质量的荧光粉已成为全固态白光发光二极管(WLED)发展不可或缺的一部分。一种新型荧光粉 La3Ga5SiO14:Mn4+ (LGS) 已通过高温固态反应成功合成。LGS 的晶体结构属于三方相,空间群为 P321。其激发光谱在 280-440 nm 波长范围内呈现出一个较宽的峰值。它发出高强度的红光,在 670-740 纳米波长范围内的 715 纳米波长处有一个发射峰,这是由于 Mn4+ 从 4A2g 转变为 4T2g 所造成的。当掺入浓度为 0.25 摩尔% 的 Mn 时,LGS:Mn4+ 的量子效率为 16%。随着掺杂浓度的增加,LGS:Mn4+ 的衰变曲线呈现出寿命递减的模式。此外,LGS:Mn4+ 产物的 CIE 色度为 (0.688, 0.2644),位于深红光区域。上述所有研究结果都支持 LGS:Mn4+ 试样在 WLED 中的潜在应用,从而为环保节能照明的发展做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation and photoluminescence study of rare-earth-free red emitting La3Ga5SiO14:Mn4+phosphors

Given the growing interest in eco-friendly lighting solutions, the use of high-quality phosphors has become integral to the advancement of all-solid white light-emitting diodes (WLEDs). One novel phosphor, La3Ga5SiO14:Mn4+ (LGS), has been successfully synthesized via a high-temperature solid-state reaction. The crystal structure of LGS is classified as belonging to the trigonal phase, with a space group P321. The excitation spectrum exhibits a wide peak within the wavelength range of 280–440 nm. It emits a highly intense red light, with a peak emission occurring at 715 nm within the spectral range of 670–740 nm is attributed to the transition of Mn4+ from 4A2g to 4T2g. LGS:Mn4+ demonstrates a favorable quantum efficiency of 16% when doped with a concentration of 0.25 mol% Mn. The decay curve of LGS:Mn4+ exhibits a pattern of decreasing lifetime as the dopant concentration increases. Additionally, the LGS:Mn4+ products demonstrate a CIE chromaticity of (0.688, 0.2644), which is located within the deep red light region. All the aforementioned findings support the potential application of LGS:Mn4+ specimens in WLEDs, thereby contributing to the progress of environmentally friendly and energy-efficient lighting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Functional Materials Letters
Functional Materials Letters 工程技术-材料科学:综合
CiteScore
2.40
自引率
7.70%
发文量
57
审稿时长
1.9 months
期刊介绍: Functional Materials Letters is an international peer-reviewed scientific journal for original contributions to research on the synthesis, behavior and characterization of functional materials. The journal seeks to provide a rapid forum for the communication of novel research of high quality and with an interdisciplinary flavor. The journal is an ideal forum for communication amongst materials scientists and engineers, chemists and chemical engineers, and physicists in the dynamic fields associated with functional materials. Functional materials are designed to make use of their natural or engineered functionalities to respond to changes in electrical and magnetic fields, physical and chemical environment, etc. These design considerations are fundamentally different to those relevant for structural materials and are the focus of this journal. Functional materials play an increasingly important role in the development of the field of materials science and engineering. The scope of the journal covers theoretical and experimental studies of functional materials, characterization and new applications-related research on functional materials in macro-, micro- and nano-scale science and engineering. Among the topics covered are ferroelectric, multiferroic, ferromagnetic, magneto-optical, optoelectric, thermoelectric, energy conversion and energy storage, sustainable energy and shape memory materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信