福卡斯-勒内尔斯方程的流波模式

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
EPL Pub Date : 2023-12-20 DOI:10.1209/0295-5075/ad177b
Xue-Wei Yan, Yong Chen
{"title":"福卡斯-勒内尔斯方程的流波模式","authors":"Xue-Wei Yan, Yong Chen","doi":"10.1209/0295-5075/ad177b","DOIUrl":null,"url":null,"abstract":"<jats:title>Abstract</jats:title> In this work, we study the high-order rogue wave solution for the Fokas-Lenells equation using the Kadomtsev-Petviashvili (KP) reduction method. These rogue wave patterns consist of triangle, pentagon, heptagon, nonagon, which are analytically described by the root structures of the Yablonskii-Vorob'ev polynomial hierarchy. On the other hand, we also report the other types of rogue wave patterns including heart-shaped, fan-shaped, two-arc+triangle, arc+pentagon, etc., which are analytically described by the root structures of Adler-Moser polynomials. These polynomials are the generalizations of the Yablonskii-Vorob'ev polynomial hierarchy, because of the arbitrariness of complex parameter <jats:inline-formula> <jats:tex-math><?CDATA $a_{2j+1}$ ?></jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"epl23100723ieqn1.gif\" xlink:type=\"simple\" /> </jats:inline-formula>. In addition, these rogue wave patterns are formed by the Peregrine solitons undergoing dilation, rotation, stretch, shear and translation. We also compare the prediction solutions with the corresponding true solutions and show the good consistency between them.","PeriodicalId":11738,"journal":{"name":"EPL","volume":"203 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rogue wave patterns of the Fokas-Lenells equation\",\"authors\":\"Xue-Wei Yan, Yong Chen\",\"doi\":\"10.1209/0295-5075/ad177b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:title>Abstract</jats:title> In this work, we study the high-order rogue wave solution for the Fokas-Lenells equation using the Kadomtsev-Petviashvili (KP) reduction method. These rogue wave patterns consist of triangle, pentagon, heptagon, nonagon, which are analytically described by the root structures of the Yablonskii-Vorob'ev polynomial hierarchy. On the other hand, we also report the other types of rogue wave patterns including heart-shaped, fan-shaped, two-arc+triangle, arc+pentagon, etc., which are analytically described by the root structures of Adler-Moser polynomials. These polynomials are the generalizations of the Yablonskii-Vorob'ev polynomial hierarchy, because of the arbitrariness of complex parameter <jats:inline-formula> <jats:tex-math><?CDATA $a_{2j+1}$ ?></jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"epl23100723ieqn1.gif\\\" xlink:type=\\\"simple\\\" /> </jats:inline-formula>. In addition, these rogue wave patterns are formed by the Peregrine solitons undergoing dilation, rotation, stretch, shear and translation. We also compare the prediction solutions with the corresponding true solutions and show the good consistency between them.\",\"PeriodicalId\":11738,\"journal\":{\"name\":\"EPL\",\"volume\":\"203 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPL\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1209/0295-5075/ad177b\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad177b","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在这项工作中,我们使用 Kadomtsev-Petviashvili (KP) 简化方法研究了 Fokas-Lenells 方程的高阶无赖波解。这些无赖波图案由三角形、五边形、七边形和非四边形组成,它们由 Yablonskii-Vorob'ev 多项式层次结构的根结构分析描述。另一方面,我们还报告了其他类型的流氓波图案,包括心形、扇形、双弧+三角形、弧+五角形等,这些图案由阿德勒-莫泽多项式的根结构分析描述。这些多项式是 Yablonskii-Vorob'ev 多项式层次的广义化,因为复数参数 .此外,这些流氓波模式是由经历了扩张、旋转、拉伸、剪切和平移的百灵鸟孤子形成的。我们还将预测解与相应的真实解进行了比较,结果表明两者之间具有良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rogue wave patterns of the Fokas-Lenells equation
Abstract In this work, we study the high-order rogue wave solution for the Fokas-Lenells equation using the Kadomtsev-Petviashvili (KP) reduction method. These rogue wave patterns consist of triangle, pentagon, heptagon, nonagon, which are analytically described by the root structures of the Yablonskii-Vorob'ev polynomial hierarchy. On the other hand, we also report the other types of rogue wave patterns including heart-shaped, fan-shaped, two-arc+triangle, arc+pentagon, etc., which are analytically described by the root structures of Adler-Moser polynomials. These polynomials are the generalizations of the Yablonskii-Vorob'ev polynomial hierarchy, because of the arbitrariness of complex parameter . In addition, these rogue wave patterns are formed by the Peregrine solitons undergoing dilation, rotation, stretch, shear and translation. We also compare the prediction solutions with the corresponding true solutions and show the good consistency between them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPL
EPL 物理-物理:综合
CiteScore
3.30
自引率
5.60%
发文量
332
审稿时长
1.9 months
期刊介绍: General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology. Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate). EPL also publishes Comments on Letters previously published in the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信