增强银纳米粒子装饰的一维多晶 TiO2 复合材料的双重功能,促进可持续环境应用

IF 6.7 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuan-Chang Liang, Chih-Chen Kuo
{"title":"增强银纳米粒子装饰的一维多晶 TiO2 复合材料的双重功能,促进可持续环境应用","authors":"Yuan-Chang Liang,&nbsp;Chih-Chen Kuo","doi":"10.1016/j.jsamd.2024.100696","DOIUrl":null,"url":null,"abstract":"<div><p>The hydrothermally synthesized rutile-TiO<sub>2</sub> nanorods were spin-coated with anatase-TiO<sub>2</sub> film and decorated with Ag nanoparticles via sputtering to construct Ag nanoparticles decorated heterophase TiO<sub>2</sub> composites. By extending the sputtering duration to altering the Ag content in the TiO<sub>2</sub> composition, we aim to investigate the correlation between the microstructures and the dual function of photoelectrochemical photocatalytic and gas-sensing performances for environmental applications. The Ag nanoparticles on the anatase/rutile-TiO<sub>2</sub> composites facilitate photon absorption through surface plasmon resonance. Also, Ag nanoparticles contribute the hot electron to enhance the synergy effect in the anatase-TiO<sub>2</sub>/rutile-TiO<sub>2</sub> to prevent recombination of photoinduced carriers under irradiation, thereby strengthening the photocatalytic characteristics. Furthermore, the gas sensing performance is improved due to the electronic and chemical sensitization effects caused by the Ag nanoparticles on the anatase-TiO<sub>2</sub>/rutile-TiO<sub>2</sub> composite. This study demonstrates that tuning Ag nanoparticle content in the anatase/rutile-TiO<sub>2</sub> composites is a promising material design strategy for use in highly efficient photoexcited and gas-sensing devices. The proposed Ag nanoparticles decorated polymorphic TiO<sub>2</sub> composite nanorods are suitable for eliminating organic pollutants in water and ethanol pollution monitoring.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"9 2","pages":"Article 100696"},"PeriodicalIF":6.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924000273/pdfft?md5=3523900e0350fa6084fdc318add5e888&pid=1-s2.0-S2468217924000273-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced dual function of Ag nanoparticles decorated one-dimensional polymorphic TiO2 composites for sustainable environmental applications\",\"authors\":\"Yuan-Chang Liang,&nbsp;Chih-Chen Kuo\",\"doi\":\"10.1016/j.jsamd.2024.100696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The hydrothermally synthesized rutile-TiO<sub>2</sub> nanorods were spin-coated with anatase-TiO<sub>2</sub> film and decorated with Ag nanoparticles via sputtering to construct Ag nanoparticles decorated heterophase TiO<sub>2</sub> composites. By extending the sputtering duration to altering the Ag content in the TiO<sub>2</sub> composition, we aim to investigate the correlation between the microstructures and the dual function of photoelectrochemical photocatalytic and gas-sensing performances for environmental applications. The Ag nanoparticles on the anatase/rutile-TiO<sub>2</sub> composites facilitate photon absorption through surface plasmon resonance. Also, Ag nanoparticles contribute the hot electron to enhance the synergy effect in the anatase-TiO<sub>2</sub>/rutile-TiO<sub>2</sub> to prevent recombination of photoinduced carriers under irradiation, thereby strengthening the photocatalytic characteristics. Furthermore, the gas sensing performance is improved due to the electronic and chemical sensitization effects caused by the Ag nanoparticles on the anatase-TiO<sub>2</sub>/rutile-TiO<sub>2</sub> composite. This study demonstrates that tuning Ag nanoparticle content in the anatase/rutile-TiO<sub>2</sub> composites is a promising material design strategy for use in highly efficient photoexcited and gas-sensing devices. The proposed Ag nanoparticles decorated polymorphic TiO<sub>2</sub> composite nanorods are suitable for eliminating organic pollutants in water and ethanol pollution monitoring.</p></div>\",\"PeriodicalId\":17219,\"journal\":{\"name\":\"Journal of Science: Advanced Materials and Devices\",\"volume\":\"9 2\",\"pages\":\"Article 100696\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468217924000273/pdfft?md5=3523900e0350fa6084fdc318add5e888&pid=1-s2.0-S2468217924000273-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science: Advanced Materials and Devices\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468217924000273\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924000273","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将水热法合成的金红石型氧化钛纳米棒旋涂锐钛矿-氧化钛薄膜,并通过溅射法装饰银纳米颗粒,从而构建出银纳米颗粒装饰的异相氧化钛复合材料。通过延长溅射时间来改变 TiO 成分中的 Ag 含量,我们旨在研究微观结构与光电化学光催化和气体传感双重功能之间的相关性。锐钛矿/钌-氧化钛复合材料上的银纳米颗粒通过表面等离子共振促进了光子吸收。同时,Ag 纳米粒子提供的热电子增强了锐钛矿-氧化钛/金红石-氧化钛的协同效应,防止光诱导载流子在辐照下重组,从而增强了光催化特性。此外,由于锐钛矿-氧化钛/金红石-氧化钛复合材料上的银纳米粒子所产生的电子和化学敏化效应,气体传感性能也得到了改善。这项研究表明,调整锐钛矿/金红石-氧化钛复合材料中的银纳米粒子含量是一种很有前途的材料设计策略,可用于高效光激发和气体传感设备。所提出的银纳米粒子装饰多晶氧化钛复合纳米棒适用于消除水中的有机污染物和乙醇污染监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced dual function of Ag nanoparticles decorated one-dimensional polymorphic TiO2 composites for sustainable environmental applications

The hydrothermally synthesized rutile-TiO2 nanorods were spin-coated with anatase-TiO2 film and decorated with Ag nanoparticles via sputtering to construct Ag nanoparticles decorated heterophase TiO2 composites. By extending the sputtering duration to altering the Ag content in the TiO2 composition, we aim to investigate the correlation between the microstructures and the dual function of photoelectrochemical photocatalytic and gas-sensing performances for environmental applications. The Ag nanoparticles on the anatase/rutile-TiO2 composites facilitate photon absorption through surface plasmon resonance. Also, Ag nanoparticles contribute the hot electron to enhance the synergy effect in the anatase-TiO2/rutile-TiO2 to prevent recombination of photoinduced carriers under irradiation, thereby strengthening the photocatalytic characteristics. Furthermore, the gas sensing performance is improved due to the electronic and chemical sensitization effects caused by the Ag nanoparticles on the anatase-TiO2/rutile-TiO2 composite. This study demonstrates that tuning Ag nanoparticle content in the anatase/rutile-TiO2 composites is a promising material design strategy for use in highly efficient photoexcited and gas-sensing devices. The proposed Ag nanoparticles decorated polymorphic TiO2 composite nanorods are suitable for eliminating organic pollutants in water and ethanol pollution monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Science: Advanced Materials and Devices
Journal of Science: Advanced Materials and Devices Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.90
自引率
2.50%
发文量
88
审稿时长
47 days
期刊介绍: In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research. Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science. With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信