{"title":"耐盐性聚(AM/NVP/APEG/DMAAC-18)聚合物的合成与性能","authors":"Haiyang Tian, Jiapeng Zheng, Tong Peng, Xiaoping Qin","doi":"10.1134/S096554412311004X","DOIUrl":null,"url":null,"abstract":"<p>A salt-tolerant polymer based on hydrophobically associating water-soluble polymers of 1-vinyl-2-pyrrolidone, allyl polyethylene glycol, acrylamide, and <i>N,N</i>′-dimethyl octadecyl allyl ammonium chloride has been synthesized. Salt thickening and rheological performance of the polymer solutions have been studied. Polymer solutions have demonstrated an excellent uninterruptedly thickening ability within a wide range of salt concentrations. When concentrations of NaCl and CaCl<sub>2</sub> reached 19.9 and 19.3%, the apparent viscosity of a 1% polymer solution increased to 660 and 330 mPa s, respectively. Meanwhile, polymer solutions containing high NaCl or CaCl<sub>2</sub> concentrations showed good viscoelasticity, shear resistance, and temperature resistance. A scanning electron microscopy showed that increase in a salt concentration enhanced the hydrophobic association strength of polymer solutions and increased the density of the formed network structure, which was macroscopically manifested as a viscosity increase. The results of this study may promote the research and development of polymers resistant to extreme salt concentrations.</p>","PeriodicalId":725,"journal":{"name":"Petroleum Chemistry","volume":"63 11","pages":"1365 - 1372"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Performance of a Salt-Tolerant Poly(AM/NVP/APEG/DMAAC-18) Polymer\",\"authors\":\"Haiyang Tian, Jiapeng Zheng, Tong Peng, Xiaoping Qin\",\"doi\":\"10.1134/S096554412311004X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A salt-tolerant polymer based on hydrophobically associating water-soluble polymers of 1-vinyl-2-pyrrolidone, allyl polyethylene glycol, acrylamide, and <i>N,N</i>′-dimethyl octadecyl allyl ammonium chloride has been synthesized. Salt thickening and rheological performance of the polymer solutions have been studied. Polymer solutions have demonstrated an excellent uninterruptedly thickening ability within a wide range of salt concentrations. When concentrations of NaCl and CaCl<sub>2</sub> reached 19.9 and 19.3%, the apparent viscosity of a 1% polymer solution increased to 660 and 330 mPa s, respectively. Meanwhile, polymer solutions containing high NaCl or CaCl<sub>2</sub> concentrations showed good viscoelasticity, shear resistance, and temperature resistance. A scanning electron microscopy showed that increase in a salt concentration enhanced the hydrophobic association strength of polymer solutions and increased the density of the formed network structure, which was macroscopically manifested as a viscosity increase. The results of this study may promote the research and development of polymers resistant to extreme salt concentrations.</p>\",\"PeriodicalId\":725,\"journal\":{\"name\":\"Petroleum Chemistry\",\"volume\":\"63 11\",\"pages\":\"1365 - 1372\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S096554412311004X\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S096554412311004X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Synthesis and Performance of a Salt-Tolerant Poly(AM/NVP/APEG/DMAAC-18) Polymer
A salt-tolerant polymer based on hydrophobically associating water-soluble polymers of 1-vinyl-2-pyrrolidone, allyl polyethylene glycol, acrylamide, and N,N′-dimethyl octadecyl allyl ammonium chloride has been synthesized. Salt thickening and rheological performance of the polymer solutions have been studied. Polymer solutions have demonstrated an excellent uninterruptedly thickening ability within a wide range of salt concentrations. When concentrations of NaCl and CaCl2 reached 19.9 and 19.3%, the apparent viscosity of a 1% polymer solution increased to 660 and 330 mPa s, respectively. Meanwhile, polymer solutions containing high NaCl or CaCl2 concentrations showed good viscoelasticity, shear resistance, and temperature resistance. A scanning electron microscopy showed that increase in a salt concentration enhanced the hydrophobic association strength of polymer solutions and increased the density of the formed network structure, which was macroscopically manifested as a viscosity increase. The results of this study may promote the research and development of polymers resistant to extreme salt concentrations.
期刊介绍:
Petroleum Chemistry (Neftekhimiya), founded in 1961, offers original papers on and reviews of theoretical and experimental studies concerned with current problems of petroleum chemistry and processing such as chemical composition of crude oils and natural gas liquids; petroleum refining (cracking, hydrocracking, and catalytic reforming); catalysts for petrochemical processes (hydrogenation, isomerization, oxidation, hydroformylation, etc.); activation and catalytic transformation of hydrocarbons and other components of petroleum, natural gas, and other complex organic mixtures; new petrochemicals including lubricants and additives; environmental problems; and information on scientific meetings relevant to these areas.
Petroleum Chemistry publishes articles on these topics from members of the scientific community of the former Soviet Union.