图神经网络

IF 50.1 Q1 MULTIDISCIPLINARY SCIENCES
Gabriele Corso, Hannes Stark, Stefanie Jegelka, Tommi Jaakkola, Regina Barzilay
{"title":"图神经网络","authors":"Gabriele Corso, Hannes Stark, Stefanie Jegelka, Tommi Jaakkola, Regina Barzilay","doi":"10.1038/s43586-024-00294-7","DOIUrl":null,"url":null,"abstract":"iGraphs are flexible mathematical objects that can represent many entities and knowledge from different domains, including in the life sciences. Graph neural networks (GNNs) are mathematical models that can learn functions over graphs and are a leading approach for building predictive models on graph-structured data. This combination has enabled GNNs to advance the state of the art in many disciplines, from discovering new antibiotics and identifying drug-repurposing candidates to modelling physical systems and generating new molecules. This Primer provides a practical and accessible introduction to GNNs, describing their properties and applications to the life and physical sciences. Emphasis is placed on the practical implications of key theoretical limitations, new ideas to solve these challenges and important considerations when using GNNs on a new task. Graph neural networks are a class of deep learning methods that can model physical systems, generate new molecules and identify drug candidates. This Primer introduces graph neural networks and explores how they are applied across the life and physical sciences.","PeriodicalId":74250,"journal":{"name":"Nature reviews. Methods primers","volume":" ","pages":"1-13"},"PeriodicalIF":50.1000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph neural networks\",\"authors\":\"Gabriele Corso, Hannes Stark, Stefanie Jegelka, Tommi Jaakkola, Regina Barzilay\",\"doi\":\"10.1038/s43586-024-00294-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"iGraphs are flexible mathematical objects that can represent many entities and knowledge from different domains, including in the life sciences. Graph neural networks (GNNs) are mathematical models that can learn functions over graphs and are a leading approach for building predictive models on graph-structured data. This combination has enabled GNNs to advance the state of the art in many disciplines, from discovering new antibiotics and identifying drug-repurposing candidates to modelling physical systems and generating new molecules. This Primer provides a practical and accessible introduction to GNNs, describing their properties and applications to the life and physical sciences. Emphasis is placed on the practical implications of key theoretical limitations, new ideas to solve these challenges and important considerations when using GNNs on a new task. Graph neural networks are a class of deep learning methods that can model physical systems, generate new molecules and identify drug candidates. This Primer introduces graph neural networks and explores how they are applied across the life and physical sciences.\",\"PeriodicalId\":74250,\"journal\":{\"name\":\"Nature reviews. Methods primers\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":50.1000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature reviews. Methods primers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43586-024-00294-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Methods primers","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43586-024-00294-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

iGraphs 是一种灵活的数学对象,可以表示不同领域(包括生命科学领域)的许多实体和知识。图神经网络(GNN)是一种数学模型,可以学习图上的函数,是在图结构数据上建立预测模型的主要方法。这种结合使图形神经网络能够推动许多学科的技术发展,从发现新的抗生素和确定药物再利用候选者到物理系统建模和生成新分子。这本入门书以实用、易懂的方式介绍了 GNN,描述了它们的特性以及在生命科学和物理科学中的应用。重点放在关键理论限制的实际影响、解决这些挑战的新思路以及在新任务中使用图神经网络时的重要注意事项。图神经网络是一类深度学习方法,可以为物理系统建模、生成新分子和识别候选药物。本入门介绍了图神经网络,并探讨了如何将其应用于生命科学和物理科学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Graph neural networks

Graph neural networks
iGraphs are flexible mathematical objects that can represent many entities and knowledge from different domains, including in the life sciences. Graph neural networks (GNNs) are mathematical models that can learn functions over graphs and are a leading approach for building predictive models on graph-structured data. This combination has enabled GNNs to advance the state of the art in many disciplines, from discovering new antibiotics and identifying drug-repurposing candidates to modelling physical systems and generating new molecules. This Primer provides a practical and accessible introduction to GNNs, describing their properties and applications to the life and physical sciences. Emphasis is placed on the practical implications of key theoretical limitations, new ideas to solve these challenges and important considerations when using GNNs on a new task. Graph neural networks are a class of deep learning methods that can model physical systems, generate new molecules and identify drug candidates. This Primer introduces graph neural networks and explores how they are applied across the life and physical sciences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
46.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信