{"title":"用于深度图像复原的 RGB 深度边界错位识别与校正","authors":"Meng Yang;Lulu Zhang;Delong Suzhang;Ce Zhu;Nanning Zheng","doi":"10.1109/TBC.2023.3332014","DOIUrl":null,"url":null,"abstract":"Raw depth images generally contain a large number of erroneous pixels near object boundaries due to the limitation of depth sensors. It induces misalignment of object boundaries between RGB and depth pairs. Most existing methods do not explicitly study such RGB-Depth misalignment problem. Thereby, depth boundaries cannot be accurately recovered. In this paper, a simple yet effective model is developed based on the guided filter (GF) to identify misaligned object boundaries of a raw depth image. Using GF to filter a raw depth image with the guidance of a reference RGB image, structure of the RGB image can be progressively transferred to filtered depth images as the window size of GF increases. Therefore, misaligned object boundaries in raw depth image can be identified from residuals of filtered depth images from large-size and small-size GFs. The model is embedded into Markov random field to correct misaligned object boundaries. It is restricted in fixed-width regions around depth boundaries to avoid texture-copy artifacts. The optimization problem is solved efficiently in an iterative way. Quantitative and visual results on three RGB-Depth datasets verify that the proposed method achieves the best results compared with recent optimization-based or learning-based baselines. In addition, the proposed method is effectively applied in no-reference depth quality assessment, depth super-resolution, and depth estimation enhancement.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 1","pages":"183-196"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Misaligned RGB-Depth Boundary Identification and Correction for Depth Image Recovery\",\"authors\":\"Meng Yang;Lulu Zhang;Delong Suzhang;Ce Zhu;Nanning Zheng\",\"doi\":\"10.1109/TBC.2023.3332014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Raw depth images generally contain a large number of erroneous pixels near object boundaries due to the limitation of depth sensors. It induces misalignment of object boundaries between RGB and depth pairs. Most existing methods do not explicitly study such RGB-Depth misalignment problem. Thereby, depth boundaries cannot be accurately recovered. In this paper, a simple yet effective model is developed based on the guided filter (GF) to identify misaligned object boundaries of a raw depth image. Using GF to filter a raw depth image with the guidance of a reference RGB image, structure of the RGB image can be progressively transferred to filtered depth images as the window size of GF increases. Therefore, misaligned object boundaries in raw depth image can be identified from residuals of filtered depth images from large-size and small-size GFs. The model is embedded into Markov random field to correct misaligned object boundaries. It is restricted in fixed-width regions around depth boundaries to avoid texture-copy artifacts. The optimization problem is solved efficiently in an iterative way. Quantitative and visual results on three RGB-Depth datasets verify that the proposed method achieves the best results compared with recent optimization-based or learning-based baselines. In addition, the proposed method is effectively applied in no-reference depth quality assessment, depth super-resolution, and depth estimation enhancement.\",\"PeriodicalId\":13159,\"journal\":{\"name\":\"IEEE Transactions on Broadcasting\",\"volume\":\"70 1\",\"pages\":\"183-196\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Broadcasting\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10334302/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10334302/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Misaligned RGB-Depth Boundary Identification and Correction for Depth Image Recovery
Raw depth images generally contain a large number of erroneous pixels near object boundaries due to the limitation of depth sensors. It induces misalignment of object boundaries between RGB and depth pairs. Most existing methods do not explicitly study such RGB-Depth misalignment problem. Thereby, depth boundaries cannot be accurately recovered. In this paper, a simple yet effective model is developed based on the guided filter (GF) to identify misaligned object boundaries of a raw depth image. Using GF to filter a raw depth image with the guidance of a reference RGB image, structure of the RGB image can be progressively transferred to filtered depth images as the window size of GF increases. Therefore, misaligned object boundaries in raw depth image can be identified from residuals of filtered depth images from large-size and small-size GFs. The model is embedded into Markov random field to correct misaligned object boundaries. It is restricted in fixed-width regions around depth boundaries to avoid texture-copy artifacts. The optimization problem is solved efficiently in an iterative way. Quantitative and visual results on three RGB-Depth datasets verify that the proposed method achieves the best results compared with recent optimization-based or learning-based baselines. In addition, the proposed method is effectively applied in no-reference depth quality assessment, depth super-resolution, and depth estimation enhancement.
期刊介绍:
The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”