Fatima Jamali, Mayis Aldughmi, Serin Atiani, Ali Al-Radaideh, Said Dahbour, Dana Alhattab, Hind Khwaireh, Sally Arafat, Joud Al Jaghbeer, Reem Rahmeh, Kawthar Abu Moshref, Hisham Bawaneh, Mona R Hassuneh, Bayan Hourani, Osameh Ababneh, Alia Alghwiri, Abdalla Awidi
{"title":"人脐带间充质干细胞治疗多发性硬化症患者:I/II期剂量测定临床研究》。","authors":"Fatima Jamali, Mayis Aldughmi, Serin Atiani, Ali Al-Radaideh, Said Dahbour, Dana Alhattab, Hind Khwaireh, Sally Arafat, Joud Al Jaghbeer, Reem Rahmeh, Kawthar Abu Moshref, Hisham Bawaneh, Mona R Hassuneh, Bayan Hourani, Osameh Ababneh, Alia Alghwiri, Abdalla Awidi","doi":"10.1177/09636897241233045","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a chronic neuro-inflammatory disease resulting in disabilities that negatively impact patients' life quality. While current treatment options do not reverse the course of the disease, treatment using mesenchymal stromal/stem cells (MSC) is promising. There has yet to be a consensus on the type and dose of MSC to be used in MS. This work aims to study the safety and efficacy of two treatment protocols of MSCs derived from the umbilical cord (UC-MSCs) and their secretome. The study included two groups of MS patients; Group A received two intrathecal doses of UC-MSCs, and Group B received a single dose. Both groups received UC-MSCs conditioned media 3 months post-treatment. Adverse events in the form of a clinical checklist and extensive laboratory tests were performed. Whole transcriptome analysis was performed on patients' cells at baseline and post-treatment. Results showed that all patients tolerated the cellular therapy without serious adverse events. The general disability scale improved significantly in both groups at 6 months post-treatment. Examining specific aspects of the disease revealed more parameters that improved in Group A compared to Group B patients, including a significant increase in the (CD3<sup>+</sup>CD4<sup>+</sup>) expressing lymphocytes at 12 months post-treatment. In addition, better outcomes were noted regarding lesion load, cortical thickness, manual dexterity, and information processing speed. Both protocols impacted the transcriptome of treated participants with genes, transcription factors, and microRNAs (miRNAs) differentially expressed compared to baseline. Inflammation-related and antigen-presenting (HLA-B) genes were downregulated in both groups. In contrast, TNF-alpha, TAP-1, and miR142 were downregulated only in Group A. The data presented indicate that both protocols are safe. Furthermore, it suggests that administering two doses of stem cells can be more beneficial to MS patients. Larger multisite studies should be initiated to further examine similar or higher doses of MSCs.</p>","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"33 ","pages":"9636897241233045"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10921855/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human Umbilical Cord-Derived Mesenchymal Stem Cells in the Treatment of Multiple Sclerosis Patients: Phase I/II Dose-Finding Clinical Study.\",\"authors\":\"Fatima Jamali, Mayis Aldughmi, Serin Atiani, Ali Al-Radaideh, Said Dahbour, Dana Alhattab, Hind Khwaireh, Sally Arafat, Joud Al Jaghbeer, Reem Rahmeh, Kawthar Abu Moshref, Hisham Bawaneh, Mona R Hassuneh, Bayan Hourani, Osameh Ababneh, Alia Alghwiri, Abdalla Awidi\",\"doi\":\"10.1177/09636897241233045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple sclerosis (MS) is a chronic neuro-inflammatory disease resulting in disabilities that negatively impact patients' life quality. While current treatment options do not reverse the course of the disease, treatment using mesenchymal stromal/stem cells (MSC) is promising. There has yet to be a consensus on the type and dose of MSC to be used in MS. This work aims to study the safety and efficacy of two treatment protocols of MSCs derived from the umbilical cord (UC-MSCs) and their secretome. The study included two groups of MS patients; Group A received two intrathecal doses of UC-MSCs, and Group B received a single dose. Both groups received UC-MSCs conditioned media 3 months post-treatment. Adverse events in the form of a clinical checklist and extensive laboratory tests were performed. Whole transcriptome analysis was performed on patients' cells at baseline and post-treatment. Results showed that all patients tolerated the cellular therapy without serious adverse events. The general disability scale improved significantly in both groups at 6 months post-treatment. Examining specific aspects of the disease revealed more parameters that improved in Group A compared to Group B patients, including a significant increase in the (CD3<sup>+</sup>CD4<sup>+</sup>) expressing lymphocytes at 12 months post-treatment. In addition, better outcomes were noted regarding lesion load, cortical thickness, manual dexterity, and information processing speed. Both protocols impacted the transcriptome of treated participants with genes, transcription factors, and microRNAs (miRNAs) differentially expressed compared to baseline. Inflammation-related and antigen-presenting (HLA-B) genes were downregulated in both groups. In contrast, TNF-alpha, TAP-1, and miR142 were downregulated only in Group A. The data presented indicate that both protocols are safe. Furthermore, it suggests that administering two doses of stem cells can be more beneficial to MS patients. Larger multisite studies should be initiated to further examine similar or higher doses of MSCs.</p>\",\"PeriodicalId\":9721,\"journal\":{\"name\":\"Cell Transplantation\",\"volume\":\"33 \",\"pages\":\"9636897241233045\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10921855/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Transplantation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09636897241233045\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09636897241233045","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
多发性硬化症(MS)是一种慢性神经炎症性疾病,会导致残疾,对患者的生活质量造成负面影响。虽然目前的治疗方案无法逆转病程,但使用间充质基质/干细胞(MSC)进行治疗很有希望。关于间充质干细胞的类型和剂量,目前尚未达成共识。这项工作旨在研究源自脐带的间充质干细胞(UC-MSCs)及其分泌物的两种治疗方案的安全性和有效性。研究包括两组多发性硬化症患者:A 组接受两次鞘内注射 UC-间充质干细胞,B 组接受一次注射。两组患者都在治疗后3个月接受了UC-MSCs条件培养基。以临床检查表和大量实验室检测的形式对不良事件进行了评估。对基线和治疗后患者的细胞进行了全转录组分析。结果显示,所有患者都能耐受细胞疗法,没有出现严重的不良反应。治疗后6个月时,两组患者的总体残疾程度都有明显改善。对疾病的具体方面进行检查后发现,与 B 组患者相比,A 组患者有更多参数得到改善,包括在治疗后 12 个月,表达(CD3+CD4+)的淋巴细胞明显增加。此外,在病变负荷、皮质厚度、手部灵活性和信息处理速度方面,A 组患者也取得了更好的疗效。与基线相比,两种方案都对接受治疗的参与者的转录组产生了影响,基因、转录因子和微RNA(miRNA)的表达出现了差异。炎症相关基因和抗原递呈(HLA-B)基因在两组中均出现下调。相比之下,只有 A 组的 TNF-α、TAP-1 和 miR142 下调。此外,数据还表明,使用两种剂量的干细胞对多发性硬化症患者更有益。应启动更大规模的多点研究,进一步检查类似或更高剂量的间充质干细胞。
Human Umbilical Cord-Derived Mesenchymal Stem Cells in the Treatment of Multiple Sclerosis Patients: Phase I/II Dose-Finding Clinical Study.
Multiple sclerosis (MS) is a chronic neuro-inflammatory disease resulting in disabilities that negatively impact patients' life quality. While current treatment options do not reverse the course of the disease, treatment using mesenchymal stromal/stem cells (MSC) is promising. There has yet to be a consensus on the type and dose of MSC to be used in MS. This work aims to study the safety and efficacy of two treatment protocols of MSCs derived from the umbilical cord (UC-MSCs) and their secretome. The study included two groups of MS patients; Group A received two intrathecal doses of UC-MSCs, and Group B received a single dose. Both groups received UC-MSCs conditioned media 3 months post-treatment. Adverse events in the form of a clinical checklist and extensive laboratory tests were performed. Whole transcriptome analysis was performed on patients' cells at baseline and post-treatment. Results showed that all patients tolerated the cellular therapy without serious adverse events. The general disability scale improved significantly in both groups at 6 months post-treatment. Examining specific aspects of the disease revealed more parameters that improved in Group A compared to Group B patients, including a significant increase in the (CD3+CD4+) expressing lymphocytes at 12 months post-treatment. In addition, better outcomes were noted regarding lesion load, cortical thickness, manual dexterity, and information processing speed. Both protocols impacted the transcriptome of treated participants with genes, transcription factors, and microRNAs (miRNAs) differentially expressed compared to baseline. Inflammation-related and antigen-presenting (HLA-B) genes were downregulated in both groups. In contrast, TNF-alpha, TAP-1, and miR142 were downregulated only in Group A. The data presented indicate that both protocols are safe. Furthermore, it suggests that administering two doses of stem cells can be more beneficial to MS patients. Larger multisite studies should be initiated to further examine similar or higher doses of MSCs.
期刊介绍:
Cell Transplantation, The Regenerative Medicine Journal is an open access, peer reviewed journal that is published 12 times annually. Cell Transplantation is a multi-disciplinary forum for publication of articles on cell transplantation and its applications to human diseases. Articles focus on a myriad of topics including the physiological, medical, pre-clinical, tissue engineering, stem cell, and device-oriented aspects of the nervous, endocrine, cardiovascular, and endothelial systems, as well as genetically engineered cells. Cell Transplantation also reports on relevant technological advances, clinical studies, and regulatory considerations related to the implantation of cells into the body in order to provide complete coverage of the field.