{"title":"粗糙断裂网络中固液两相热传导特性的分形模型","authors":"shanshan yang, Qiong Sheng, Mingqing Zou, Mengying Wang, Ruike Cui, Shuaiyin Chen, Qian Zheng","doi":"10.1615/jpormedia.2024052146","DOIUrl":null,"url":null,"abstract":"To discuss the influencing factors of thermal transport features in coarse fracture networks, the heat transfer analysis model of solid-liquid two-phase flow in a rough fracture network is created in this text. By calculating the thermal resistance and thermal conductivity of rough cracks, it was found that the thermal transport capacity of cracks is inversely proportional to relative roughness and porosity, and it is directly proportional to the ratio of solid-liquid thermal conductivity and Fractal dimension. Compared with other models and existing experimental data, it is concluded that the heat transfer capacity of dual media is stronger than that of the single porous medium. Finally, the percentage of thermal conductivity in the total thermal conductivity of the three parts was compared, and it was found that the strength of thermal transport mainly depends on the heat transfer ability of the matrix, because the solid thermal conductivity is much greater than the liquid thermal conductivity, so the thermal transport ability of the matrix is stronger than that of cracks and pores.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":"11 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractal model of solid-liquid two-phase thermal transport characteristics in the rough fracture network\",\"authors\":\"shanshan yang, Qiong Sheng, Mingqing Zou, Mengying Wang, Ruike Cui, Shuaiyin Chen, Qian Zheng\",\"doi\":\"10.1615/jpormedia.2024052146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To discuss the influencing factors of thermal transport features in coarse fracture networks, the heat transfer analysis model of solid-liquid two-phase flow in a rough fracture network is created in this text. By calculating the thermal resistance and thermal conductivity of rough cracks, it was found that the thermal transport capacity of cracks is inversely proportional to relative roughness and porosity, and it is directly proportional to the ratio of solid-liquid thermal conductivity and Fractal dimension. Compared with other models and existing experimental data, it is concluded that the heat transfer capacity of dual media is stronger than that of the single porous medium. Finally, the percentage of thermal conductivity in the total thermal conductivity of the three parts was compared, and it was found that the strength of thermal transport mainly depends on the heat transfer ability of the matrix, because the solid thermal conductivity is much greater than the liquid thermal conductivity, so the thermal transport ability of the matrix is stronger than that of cracks and pores.\",\"PeriodicalId\":50082,\"journal\":{\"name\":\"Journal of Porous Media\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/jpormedia.2024052146\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Media","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/jpormedia.2024052146","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Fractal model of solid-liquid two-phase thermal transport characteristics in the rough fracture network
To discuss the influencing factors of thermal transport features in coarse fracture networks, the heat transfer analysis model of solid-liquid two-phase flow in a rough fracture network is created in this text. By calculating the thermal resistance and thermal conductivity of rough cracks, it was found that the thermal transport capacity of cracks is inversely proportional to relative roughness and porosity, and it is directly proportional to the ratio of solid-liquid thermal conductivity and Fractal dimension. Compared with other models and existing experimental data, it is concluded that the heat transfer capacity of dual media is stronger than that of the single porous medium. Finally, the percentage of thermal conductivity in the total thermal conductivity of the three parts was compared, and it was found that the strength of thermal transport mainly depends on the heat transfer ability of the matrix, because the solid thermal conductivity is much greater than the liquid thermal conductivity, so the thermal transport ability of the matrix is stronger than that of cracks and pores.
期刊介绍:
The Journal of Porous Media publishes original full-length research articles (and technical notes) in a wide variety of areas related to porous media studies, such as mathematical modeling, numerical and experimental techniques, industrial and environmental heat and mass transfer, conduction, convection, radiation, particle transport and capillary effects, reactive flows, deformable porous media, biomedical applications, and mechanics of the porous substrate. Emphasis will be given to manuscripts that present novel findings pertinent to these areas. The journal will also consider publication of state-of-the-art reviews. Manuscripts applying known methods to previously solved problems or providing results in the absence of scientific motivation or application will not be accepted. Submitted articles should contribute to the understanding of specific scientific problems or to solution techniques that are useful in applications. Papers that link theory with computational practice to provide insight into the processes are welcome.