半评价环的正则性和代数 K 理论的同调不变性

Christian Dahlhausen
{"title":"半评价环的正则性和代数 K 理论的同调不变性","authors":"Christian Dahlhausen","doi":"arxiv-2403.02413","DOIUrl":null,"url":null,"abstract":"We show that the algebraic K-theory of semi-valuation rings with stably\ncoherent regular semi-fraction ring satisfies homotopy invariance. Moreover, we\nshow that these rings are regular if their valuation is non-trivial. Thus they\nyield examples of regular rings which are not homotopy invariant for algebraic\nK-theory. On the other hand, they are not necessarily coherent, so that they\nprovide a class of possibly non-coherent examples for homotopy invariance of\nalgebraic K-theory. As an application, we show that Temkin's relative\nRiemann-Zariski spaces also satisfy homotopy invariance for K-theory under some\nfiniteness assumption.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity of semi-valuation rings and homotopy invariance of algebraic K-theory\",\"authors\":\"Christian Dahlhausen\",\"doi\":\"arxiv-2403.02413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the algebraic K-theory of semi-valuation rings with stably\\ncoherent regular semi-fraction ring satisfies homotopy invariance. Moreover, we\\nshow that these rings are regular if their valuation is non-trivial. Thus they\\nyield examples of regular rings which are not homotopy invariant for algebraic\\nK-theory. On the other hand, they are not necessarily coherent, so that they\\nprovide a class of possibly non-coherent examples for homotopy invariance of\\nalgebraic K-theory. As an application, we show that Temkin's relative\\nRiemann-Zariski spaces also satisfy homotopy invariance for K-theory under some\\nfiniteness assumption.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.02413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.02413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,具有稳定相干正则半分数环的半估值环的代数 K 理论满足同调不变性。此外,我们还证明,如果这些环的估值是非三维的,那么它们就是正则环。因此,它们给出了对代数 K 理论来说不具有同调不变性的正则环的例子。另一方面,它们不一定是相干的,因此它们为代数 K 理论的同调不变性提供了一类可能是非相干的例子。作为一个应用,我们证明了滕金的相对黎曼-扎里斯基空间在某种有限性假设下也满足 K 理论的同调不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity of semi-valuation rings and homotopy invariance of algebraic K-theory
We show that the algebraic K-theory of semi-valuation rings with stably coherent regular semi-fraction ring satisfies homotopy invariance. Moreover, we show that these rings are regular if their valuation is non-trivial. Thus they yield examples of regular rings which are not homotopy invariant for algebraic K-theory. On the other hand, they are not necessarily coherent, so that they provide a class of possibly non-coherent examples for homotopy invariance of algebraic K-theory. As an application, we show that Temkin's relative Riemann-Zariski spaces also satisfy homotopy invariance for K-theory under some finiteness assumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信