RAM-EHR:检索增强满足电子健康记录的临床预测

Ran Xu, Wenqi Shi, Yue Yu, Yuchen Zhuang, Bowen Jin, May D. Wang, Joyce C. Ho, Carl Yang
{"title":"RAM-EHR:检索增强满足电子健康记录的临床预测","authors":"Ran Xu, Wenqi Shi, Yue Yu, Yuchen Zhuang, Bowen Jin, May D. Wang, Joyce C. Ho, Carl Yang","doi":"arxiv-2403.00815","DOIUrl":null,"url":null,"abstract":"We present RAM-EHR, a Retrieval AugMentation pipeline to improve clinical\npredictions on Electronic Health Records (EHRs). RAM-EHR first collects\nmultiple knowledge sources, converts them into text format, and uses dense\nretrieval to obtain information related to medical concepts. This strategy\naddresses the difficulties associated with complex names for the concepts.\nRAM-EHR then augments the local EHR predictive model co-trained with\nconsistency regularization to capture complementary information from patient\nvisits and summarized knowledge. Experiments on two EHR datasets show the\nefficacy of RAM-EHR over previous knowledge-enhanced baselines (3.4% gain in\nAUROC and 7.2% gain in AUPR), emphasizing the effectiveness of the summarized\nknowledge from RAM-EHR for clinical prediction tasks. The code will be\npublished at \\url{https://github.com/ritaranx/RAM-EHR}.","PeriodicalId":501219,"journal":{"name":"arXiv - QuanBio - Other Quantitative Biology","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RAM-EHR: Retrieval Augmentation Meets Clinical Predictions on Electronic Health Records\",\"authors\":\"Ran Xu, Wenqi Shi, Yue Yu, Yuchen Zhuang, Bowen Jin, May D. Wang, Joyce C. Ho, Carl Yang\",\"doi\":\"arxiv-2403.00815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present RAM-EHR, a Retrieval AugMentation pipeline to improve clinical\\npredictions on Electronic Health Records (EHRs). RAM-EHR first collects\\nmultiple knowledge sources, converts them into text format, and uses dense\\nretrieval to obtain information related to medical concepts. This strategy\\naddresses the difficulties associated with complex names for the concepts.\\nRAM-EHR then augments the local EHR predictive model co-trained with\\nconsistency regularization to capture complementary information from patient\\nvisits and summarized knowledge. Experiments on two EHR datasets show the\\nefficacy of RAM-EHR over previous knowledge-enhanced baselines (3.4% gain in\\nAUROC and 7.2% gain in AUPR), emphasizing the effectiveness of the summarized\\nknowledge from RAM-EHR for clinical prediction tasks. The code will be\\npublished at \\\\url{https://github.com/ritaranx/RAM-EHR}.\",\"PeriodicalId\":501219,\"journal\":{\"name\":\"arXiv - QuanBio - Other Quantitative Biology\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Other Quantitative Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.00815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Other Quantitative Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.00815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍的 RAM-EHR 是一种检索增强管道(Retrieval AugMentation pipeline),用于改进电子健康记录(EHR)上的临床预测。RAM-EHR 首先收集多个知识源,将其转换为文本格式,然后使用密集检索来获取与医学概念相关的信息。然后,RAM-EHR 增强了与一致性正则化共同训练的本地 EHR 预测模型,以捕捉来自患者就诊和总结知识的补充信息。在两个电子病历数据集上进行的实验表明,RAM-EHR 比以前的知识增强基线模型更有效(AUROC 提高了 3.4%,AUPR 提高了 7.2%),强调了 RAM-EHR 总结的知识在临床预测任务中的有效性。代码将发布在 \url{https://github.com/ritaranx/RAM-EHR} 上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RAM-EHR: Retrieval Augmentation Meets Clinical Predictions on Electronic Health Records
We present RAM-EHR, a Retrieval AugMentation pipeline to improve clinical predictions on Electronic Health Records (EHRs). RAM-EHR first collects multiple knowledge sources, converts them into text format, and uses dense retrieval to obtain information related to medical concepts. This strategy addresses the difficulties associated with complex names for the concepts. RAM-EHR then augments the local EHR predictive model co-trained with consistency regularization to capture complementary information from patient visits and summarized knowledge. Experiments on two EHR datasets show the efficacy of RAM-EHR over previous knowledge-enhanced baselines (3.4% gain in AUROC and 7.2% gain in AUPR), emphasizing the effectiveness of the summarized knowledge from RAM-EHR for clinical prediction tasks. The code will be published at \url{https://github.com/ritaranx/RAM-EHR}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信