关于封面高阶复杂有限差分

IF 0.6 4区 数学 Q3 MATHEMATICS
{"title":"关于封面高阶复杂有限差分","authors":"","doi":"10.1007/s40315-024-00520-z","DOIUrl":null,"url":null,"abstract":"<p>In his recent work, Bengt Fornberg describes the construction of finite difference schemes (FDS) for accurate numerical computation of higher order derivatives of analytic functions. In this note we introduce the <i>characteristic function</i> of these schemes and explore how it encodes properties of the FDS. Visualizations of the characteristic function and their modifications allow one to read off these properties by visual inspection of phase portraits. The cover of this volume shows a phase portrait of a function which is related to a FDS with nine nodes that approximates the 4th derivative with an error of order <span>\\(h^8\\)</span>.</p>","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":"272 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About the Cover: Complex Finite Differences of Higher Order\",\"authors\":\"\",\"doi\":\"10.1007/s40315-024-00520-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In his recent work, Bengt Fornberg describes the construction of finite difference schemes (FDS) for accurate numerical computation of higher order derivatives of analytic functions. In this note we introduce the <i>characteristic function</i> of these schemes and explore how it encodes properties of the FDS. Visualizations of the characteristic function and their modifications allow one to read off these properties by visual inspection of phase portraits. The cover of this volume shows a phase portrait of a function which is related to a FDS with nine nodes that approximates the 4th derivative with an error of order <span>\\\\(h^8\\\\)</span>.</p>\",\"PeriodicalId\":49088,\"journal\":{\"name\":\"Computational Methods and Function Theory\",\"volume\":\"272 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods and Function Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-024-00520-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods and Function Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00520-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本特-福恩伯格(Bengt Fornberg)在其最新著作中描述了有限差分方案(FDS)的构造,该方案用于解析函数高阶导数的精确数值计算。在本说明中,我们将介绍这些方案的特征函数,并探讨它如何编码有限差分方案的属性。通过对特征函数及其修正的可视化,我们可以直观地观察相位肖像来解读这些特性。本卷的封面展示了一个函数的相位肖像,该函数与具有九个节点的 FDS 有关,它以 \(h^8\) 的误差逼近第 4 次导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

About the Cover: Complex Finite Differences of Higher Order

About the Cover: Complex Finite Differences of Higher Order

In his recent work, Bengt Fornberg describes the construction of finite difference schemes (FDS) for accurate numerical computation of higher order derivatives of analytic functions. In this note we introduce the characteristic function of these schemes and explore how it encodes properties of the FDS. Visualizations of the characteristic function and their modifications allow one to read off these properties by visual inspection of phase portraits. The cover of this volume shows a phase portrait of a function which is related to a FDS with nine nodes that approximates the 4th derivative with an error of order \(h^8\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Methods and Function Theory
Computational Methods and Function Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.20
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: CMFT is an international mathematics journal which publishes carefully selected original research papers in complex analysis (in a broad sense), and on applications or computational methods related to complex analysis. Survey articles of high standard and current interest can be considered for publication as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信