克里普克伎俩的变体

IF 0.6 3区 数学 Q2 LOGIC
{"title":"克里普克伎俩的变体","authors":"","doi":"10.1007/s11225-023-10093-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In the early 1960s, to prove undecidability of monadic fragments of sublogics of the predicate modal logic <span> <span>\\(\\textbf{QS5}\\)</span> </span> that include the classical predicate logic <span> <span>\\(\\textbf{QCl}\\)</span> </span>, Saul Kripke showed how a classical atomic formula with a binary predicate letter can be simulated by a monadic modal formula. We consider adaptations of Kripke’s simulation, which we call the Kripke trick, to various modal and superintuitionistic predicate logics not considered by Kripke. We also discuss settings where the Kripke trick does not work and where, as a result, decidability of monadic modal predicate logics can be obtained.</p>","PeriodicalId":48979,"journal":{"name":"Studia Logica","volume":"272 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variations on the Kripke Trick\",\"authors\":\"\",\"doi\":\"10.1007/s11225-023-10093-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In the early 1960s, to prove undecidability of monadic fragments of sublogics of the predicate modal logic <span> <span>\\\\(\\\\textbf{QS5}\\\\)</span> </span> that include the classical predicate logic <span> <span>\\\\(\\\\textbf{QCl}\\\\)</span> </span>, Saul Kripke showed how a classical atomic formula with a binary predicate letter can be simulated by a monadic modal formula. We consider adaptations of Kripke’s simulation, which we call the Kripke trick, to various modal and superintuitionistic predicate logics not considered by Kripke. We also discuss settings where the Kripke trick does not work and where, as a result, decidability of monadic modal predicate logics can be obtained.</p>\",\"PeriodicalId\":48979,\"journal\":{\"name\":\"Studia Logica\",\"volume\":\"272 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Logica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11225-023-10093-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Logica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-023-10093-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在20世纪60年代早期,为了证明包含经典谓词逻辑\(\textbf{QCl}\)的谓词模态逻辑子逻辑的单元片段的不可判定性,索尔-克里普克展示了带有二元谓词信的经典原子式如何能够被单元模态式所模拟。我们考虑了克里普克的模拟(我们称之为克里普克技巧)在克里普克未考虑的各种模态逻辑和超直觉谓词逻辑中的适应性。我们还讨论了克里普克诀窍不起作用的情形,在这些情形中,可以得到一元模态谓词逻辑的可解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variations on the Kripke Trick

Abstract

In the early 1960s, to prove undecidability of monadic fragments of sublogics of the predicate modal logic \(\textbf{QS5}\) that include the classical predicate logic \(\textbf{QCl}\) , Saul Kripke showed how a classical atomic formula with a binary predicate letter can be simulated by a monadic modal formula. We consider adaptations of Kripke’s simulation, which we call the Kripke trick, to various modal and superintuitionistic predicate logics not considered by Kripke. We also discuss settings where the Kripke trick does not work and where, as a result, decidability of monadic modal predicate logics can be obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Logica
Studia Logica MATHEMATICS-LOGIC
CiteScore
1.70
自引率
14.30%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The leading idea of Lvov-Warsaw School of Logic, Philosophy and Mathematics was to investigate philosophical problems by means of rigorous methods of mathematics. Evidence of the great success the School experienced is the fact that it has become generally recognized as Polish Style Logic. Today Polish Style Logic is no longer exclusively a Polish speciality. It is represented by numerous logicians, mathematicians and philosophers from research centers all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信