{"title":"克里普克伎俩的变体","authors":"","doi":"10.1007/s11225-023-10093-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In the early 1960s, to prove undecidability of monadic fragments of sublogics of the predicate modal logic <span> <span>\\(\\textbf{QS5}\\)</span> </span> that include the classical predicate logic <span> <span>\\(\\textbf{QCl}\\)</span> </span>, Saul Kripke showed how a classical atomic formula with a binary predicate letter can be simulated by a monadic modal formula. We consider adaptations of Kripke’s simulation, which we call the Kripke trick, to various modal and superintuitionistic predicate logics not considered by Kripke. We also discuss settings where the Kripke trick does not work and where, as a result, decidability of monadic modal predicate logics can be obtained.</p>","PeriodicalId":48979,"journal":{"name":"Studia Logica","volume":"272 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variations on the Kripke Trick\",\"authors\":\"\",\"doi\":\"10.1007/s11225-023-10093-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In the early 1960s, to prove undecidability of monadic fragments of sublogics of the predicate modal logic <span> <span>\\\\(\\\\textbf{QS5}\\\\)</span> </span> that include the classical predicate logic <span> <span>\\\\(\\\\textbf{QCl}\\\\)</span> </span>, Saul Kripke showed how a classical atomic formula with a binary predicate letter can be simulated by a monadic modal formula. We consider adaptations of Kripke’s simulation, which we call the Kripke trick, to various modal and superintuitionistic predicate logics not considered by Kripke. We also discuss settings where the Kripke trick does not work and where, as a result, decidability of monadic modal predicate logics can be obtained.</p>\",\"PeriodicalId\":48979,\"journal\":{\"name\":\"Studia Logica\",\"volume\":\"272 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Logica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11225-023-10093-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Logica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-023-10093-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
In the early 1960s, to prove undecidability of monadic fragments of sublogics of the predicate modal logic \(\textbf{QS5}\) that include the classical predicate logic \(\textbf{QCl}\), Saul Kripke showed how a classical atomic formula with a binary predicate letter can be simulated by a monadic modal formula. We consider adaptations of Kripke’s simulation, which we call the Kripke trick, to various modal and superintuitionistic predicate logics not considered by Kripke. We also discuss settings where the Kripke trick does not work and where, as a result, decidability of monadic modal predicate logics can be obtained.
期刊介绍:
The leading idea of Lvov-Warsaw School of Logic, Philosophy and Mathematics was to investigate philosophical problems by means of rigorous methods of mathematics. Evidence of the great success the School experienced is the fact that it has become generally recognized as Polish Style Logic. Today Polish Style Logic is no longer exclusively a Polish speciality. It is represented by numerous logicians, mathematicians and philosophers from research centers all over the world.