通过杨-巴克斯特方程探索类似 ASEP 模型的新方法

Suvendu Barik, Alexander. S. Garkun, Vladimir Gritsev
{"title":"通过杨-巴克斯特方程探索类似 ASEP 模型的新方法","authors":"Suvendu Barik, Alexander. S. Garkun, Vladimir Gritsev","doi":"arxiv-2403.03159","DOIUrl":null,"url":null,"abstract":"We explore the algebraic structure of a particular ansatz of Yang Baxter\nEquation which is inspired from the Bethe Ansatz treatment of the ASEP\nspin-model. Various classes of Hamiltonian density arriving from two types of\nR-Matrices are found which also appear as solutions of constant YBE. We\nidentify the idempotent and nilpotent categories of such constant R-Matrices\nand perform a rank-1 numerical search for the lowest dimension. A summary of\nfinalised results reveals general non-hermitian spin-1/2 chain models.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel approach of exploring ASEP-like models through the Yang Baxter Equation\",\"authors\":\"Suvendu Barik, Alexander. S. Garkun, Vladimir Gritsev\",\"doi\":\"arxiv-2403.03159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the algebraic structure of a particular ansatz of Yang Baxter\\nEquation which is inspired from the Bethe Ansatz treatment of the ASEP\\nspin-model. Various classes of Hamiltonian density arriving from two types of\\nR-Matrices are found which also appear as solutions of constant YBE. We\\nidentify the idempotent and nilpotent categories of such constant R-Matrices\\nand perform a rank-1 numerical search for the lowest dimension. A summary of\\nfinalised results reveals general non-hermitian spin-1/2 chain models.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.03159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.03159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们探讨了杨-巴克斯特方程(Yang BaxterEquation)的一种特殊解析的代数结构,这种解析的灵感来自于对 ASEPspin 模型的 Bethe Ansatz 处理。我们发现了从两类 R 矩阵中得到的各类哈密顿密度,这些哈密顿密度也作为恒定杨百翰方程的解出现。我们确定了这类恒定 R 矩的等价和零等价类别,并对最低维度进行了秩-1 数值搜索。对最终结果的总结揭示了一般的非全息自旋-1/2 链模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel approach of exploring ASEP-like models through the Yang Baxter Equation
We explore the algebraic structure of a particular ansatz of Yang Baxter Equation which is inspired from the Bethe Ansatz treatment of the ASEP spin-model. Various classes of Hamiltonian density arriving from two types of R-Matrices are found which also appear as solutions of constant YBE. We identify the idempotent and nilpotent categories of such constant R-Matrices and perform a rank-1 numerical search for the lowest dimension. A summary of finalised results reveals general non-hermitian spin-1/2 chain models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信