解析偏斜积的素数定理 | 数学年鉴

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Adam Kanigowski, Mariusz Lemańczyk, Maksym Radziwiłł
{"title":"解析偏斜积的素数定理 | 数学年鉴","authors":"Adam Kanigowski, Mariusz Lemańczyk, Maksym Radziwiłł","doi":"10.4007/annals.2024.199.2.2","DOIUrl":null,"url":null,"abstract":"<p>We establish a prime number theorem for all uniquely ergodic, analytic skew products on the $2$-torus $\\mathbb{T}^2$. More precisely, for every irrational $\\alpha$ and every $1$-periodic real analytic $g:\\mathbb{R}\\to\\mathbb{R}$ of zero mean, let $T_{\\alpha,g} : \\mathbb{T}^2 \\rightarrow \\mathbb{T}^2$ be defined by $(x,y) \\mapsto (x+\\alpha,y+g(x))$. We prove that if $T_{\\alpha, g}$ is uniquely ergodic then, for every $(x,y) \\in \\mathbb{T}^2$, the sequence $\\{T_{\\alpha, g}^p(x,y)\\}$ is equidistributed on $\\mathbb{T}^2$ as $p$ traverses prime numbers. This is the first example of a class of natural, non-algebraic and smooth dynamical systems for which a prime number theorem holds. We also show that such a prime number theorem does not necessarily hold if $g$ is only continuous on $\\mathbb{T}$.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prime number theorem for analytic skew products | Annals of Mathematics\",\"authors\":\"Adam Kanigowski, Mariusz Lemańczyk, Maksym Radziwiłł\",\"doi\":\"10.4007/annals.2024.199.2.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish a prime number theorem for all uniquely ergodic, analytic skew products on the $2$-torus $\\\\mathbb{T}^2$. More precisely, for every irrational $\\\\alpha$ and every $1$-periodic real analytic $g:\\\\mathbb{R}\\\\to\\\\mathbb{R}$ of zero mean, let $T_{\\\\alpha,g} : \\\\mathbb{T}^2 \\\\rightarrow \\\\mathbb{T}^2$ be defined by $(x,y) \\\\mapsto (x+\\\\alpha,y+g(x))$. We prove that if $T_{\\\\alpha, g}$ is uniquely ergodic then, for every $(x,y) \\\\in \\\\mathbb{T}^2$, the sequence $\\\\{T_{\\\\alpha, g}^p(x,y)\\\\}$ is equidistributed on $\\\\mathbb{T}^2$ as $p$ traverses prime numbers. This is the first example of a class of natural, non-algebraic and smooth dynamical systems for which a prime number theorem holds. We also show that such a prime number theorem does not necessarily hold if $g$ is only continuous on $\\\\mathbb{T}$.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2024.199.2.2\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.2.2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们为所有唯一遍历的、2$-torus $\mathbb{T}^2$ 上的解析偏积建立了一个素数定理。更确切地说,对于每一个无理 $\alpha$ 和每一个均值为零的 1$ 周期实解析 $g:\mathbb{R}\to\mathbb{R}$,让 $T_{alpha,g} : \mathbb{T}^2 \rightarrow \mathbb{T}^2$定义为 $(x,y) \mapsto (x+\alpha,y+g(x))$。我们证明,如果 $T_{\alpha, g}$ 是唯一遍历的,那么对于 \mathbb{T}^2$ 中的每一个 $(x,y),当 $p$ 遍历素数时,序列 $\{T_{\alpha, g}^p(x,y)\}$ 在 $\mathbb{T}^2$ 上是等分布的。这是素数定理成立的一类自然、非代数、平稳动力系统的第一个例子。我们还证明,如果 $g$ 仅在 $\mathbb{T}$ 上连续,则素数定理不一定成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prime number theorem for analytic skew products | Annals of Mathematics

We establish a prime number theorem for all uniquely ergodic, analytic skew products on the $2$-torus $\mathbb{T}^2$. More precisely, for every irrational $\alpha$ and every $1$-periodic real analytic $g:\mathbb{R}\to\mathbb{R}$ of zero mean, let $T_{\alpha,g} : \mathbb{T}^2 \rightarrow \mathbb{T}^2$ be defined by $(x,y) \mapsto (x+\alpha,y+g(x))$. We prove that if $T_{\alpha, g}$ is uniquely ergodic then, for every $(x,y) \in \mathbb{T}^2$, the sequence $\{T_{\alpha, g}^p(x,y)\}$ is equidistributed on $\mathbb{T}^2$ as $p$ traverses prime numbers. This is the first example of a class of natural, non-algebraic and smooth dynamical systems for which a prime number theorem holds. We also show that such a prime number theorem does not necessarily hold if $g$ is only continuous on $\mathbb{T}$.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信