{"title":"表面群的典型表示 | 数学年鉴","authors":"Aaron Landesman, Daniel Litt","doi":"10.4007/annals.2024.199.2.6","DOIUrl":null,"url":null,"abstract":"<p>Let $\\Sigma _{g,n}$ be an orientable surface of genus $g$ with $n$ punctures. We study actions of the mapping class group $\\mathrm {Mod}_{g,n}$ of $\\Sigma _{g,n}$ via Hodge-theoretic and arithmetic techniques. We show that if $$\\rho : \\pi _1(\\Sigma _{g,n})\\to \\mathrm {GL}_r(\\mathbb {C})$$ is a representation whose conjugacy class has finite orbit under $\\mathrm {Mod}_{g,n}$, and $r\\lt \\sqrt {g+1}$, then $\\rho $ has finite image. This answers questions of Junho Peter Whang and Mark Kisin. We give applications of our methods to the Putman-Wieland conjecture, the Fontaine-Mazur conjecture, and a question of Esnault-Kerz. The proofs rely on non-abelian Hodge theory, our earlier work on semistability of isomonodromic deformations, and recent work of Esnault-Groechenig and Klevdal-Patrikis on Simpson’s integrality conjecture for cohomologically rigid local systems.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Canonical representations of surface groups | Annals of Mathematics\",\"authors\":\"Aaron Landesman, Daniel Litt\",\"doi\":\"10.4007/annals.2024.199.2.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let $\\\\Sigma _{g,n}$ be an orientable surface of genus $g$ with $n$ punctures. We study actions of the mapping class group $\\\\mathrm {Mod}_{g,n}$ of $\\\\Sigma _{g,n}$ via Hodge-theoretic and arithmetic techniques. We show that if $$\\\\rho : \\\\pi _1(\\\\Sigma _{g,n})\\\\to \\\\mathrm {GL}_r(\\\\mathbb {C})$$ is a representation whose conjugacy class has finite orbit under $\\\\mathrm {Mod}_{g,n}$, and $r\\\\lt \\\\sqrt {g+1}$, then $\\\\rho $ has finite image. This answers questions of Junho Peter Whang and Mark Kisin. We give applications of our methods to the Putman-Wieland conjecture, the Fontaine-Mazur conjecture, and a question of Esnault-Kerz. The proofs rely on non-abelian Hodge theory, our earlier work on semistability of isomonodromic deformations, and recent work of Esnault-Groechenig and Klevdal-Patrikis on Simpson’s integrality conjecture for cohomologically rigid local systems.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2024.199.2.6\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.2.6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Canonical representations of surface groups | Annals of Mathematics
Let $\Sigma _{g,n}$ be an orientable surface of genus $g$ with $n$ punctures. We study actions of the mapping class group $\mathrm {Mod}_{g,n}$ of $\Sigma _{g,n}$ via Hodge-theoretic and arithmetic techniques. We show that if $$\rho : \pi _1(\Sigma _{g,n})\to \mathrm {GL}_r(\mathbb {C})$$ is a representation whose conjugacy class has finite orbit under $\mathrm {Mod}_{g,n}$, and $r\lt \sqrt {g+1}$, then $\rho $ has finite image. This answers questions of Junho Peter Whang and Mark Kisin. We give applications of our methods to the Putman-Wieland conjecture, the Fontaine-Mazur conjecture, and a question of Esnault-Kerz. The proofs rely on non-abelian Hodge theory, our earlier work on semistability of isomonodromic deformations, and recent work of Esnault-Groechenig and Klevdal-Patrikis on Simpson’s integrality conjecture for cohomologically rigid local systems.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.