{"title":"$r(4,t)$ 的渐近线 | 数学年鉴","authors":"Sam Mattheus, Jacques Verstraete","doi":"10.4007/annals.2024.199.2.8","DOIUrl":null,"url":null,"abstract":"<p>For integers $s,t \\geq 2$, the Ramsey number $r(s,t)$ denotes the minimum $n$ such that every $n$-vertex graph contains a clique of order $s$ or an independent set of order $t$. In this paper we prove \\[ r(4,t) = \\Omega\\Bigl(\\frac{t^3}{\\log^4 \\! t}\\Bigr) \\quad \\quad \\mbox{ as }t \\rightarrow \\infty,\\] which determines $r(4,t)$ up to a factor of order $\\log^2 \\! t$, and solves a conjecture of Erdős.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The asymptotics of $r(4,t)$ | Annals of Mathematics\",\"authors\":\"Sam Mattheus, Jacques Verstraete\",\"doi\":\"10.4007/annals.2024.199.2.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For integers $s,t \\\\geq 2$, the Ramsey number $r(s,t)$ denotes the minimum $n$ such that every $n$-vertex graph contains a clique of order $s$ or an independent set of order $t$. In this paper we prove \\\\[ r(4,t) = \\\\Omega\\\\Bigl(\\\\frac{t^3}{\\\\log^4 \\\\! t}\\\\Bigr) \\\\quad \\\\quad \\\\mbox{ as }t \\\\rightarrow \\\\infty,\\\\] which determines $r(4,t)$ up to a factor of order $\\\\log^2 \\\\! t$, and solves a conjecture of Erdős.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2024.199.2.8\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.2.8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The asymptotics of $r(4,t)$ | Annals of Mathematics
For integers $s,t \geq 2$, the Ramsey number $r(s,t)$ denotes the minimum $n$ such that every $n$-vertex graph contains a clique of order $s$ or an independent set of order $t$. In this paper we prove \[ r(4,t) = \Omega\Bigl(\frac{t^3}{\log^4 \! t}\Bigr) \quad \quad \mbox{ as }t \rightarrow \infty,\] which determines $r(4,t)$ up to a factor of order $\log^2 \! t$, and solves a conjecture of Erdős.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.