Wilkie's conjecture for Pfaffian structures | 数学年鉴

IF 5.7 1区 数学 Q1 MATHEMATICS
Gal Binyamini, Dmitry Novikov, Benny Zak
{"title":"Wilkie's conjecture for Pfaffian structures | 数学年鉴","authors":"Gal Binyamini, Dmitry Novikov, Benny Zak","doi":"10.4007/annals.2024.199.2.5","DOIUrl":null,"url":null,"abstract":"<p>We prove an effective form of Wilkie’s conjecture in the structure generated by restricted sub-Pfaffian functions: the number of rational points of height $H$ lying in the transcendental part of such a set grows no faster than some power of $\\log H$. Our bounds depend only on the Pfaffian complexity of the sets involved. As a corollary we deduce Wilkie’s original conjecture for $\\mathbb{R}_{\\rm exp}$ in full generality.</p>","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wilkie’s conjecture for Pfaffian structures | Annals of Mathematics\",\"authors\":\"Gal Binyamini, Dmitry Novikov, Benny Zak\",\"doi\":\"10.4007/annals.2024.199.2.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove an effective form of Wilkie’s conjecture in the structure generated by restricted sub-Pfaffian functions: the number of rational points of height $H$ lying in the transcendental part of such a set grows no faster than some power of $\\\\log H$. Our bounds depend only on the Pfaffian complexity of the sets involved. As a corollary we deduce Wilkie’s original conjecture for $\\\\mathbb{R}_{\\\\rm exp}$ in full generality.</p>\",\"PeriodicalId\":8134,\"journal\":{\"name\":\"Annals of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2024.199.2.5\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.2.5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了威尔基猜想在受限子普法非函数生成的结构中的有效形式:高度为 $H$ 的有理点的数目位于这样一个集合的超越部分,其增长速度不超过 $\log H$ 的某个幂。我们的界限只取决于相关集合的普法因子复杂性。作为推论,我们推导出威尔基对 $\mathbb{R}_{\rm exp}$ 的最初猜想的全部一般性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wilkie’s conjecture for Pfaffian structures | Annals of Mathematics

We prove an effective form of Wilkie’s conjecture in the structure generated by restricted sub-Pfaffian functions: the number of rational points of height $H$ lying in the transcendental part of such a set grows no faster than some power of $\log H$. Our bounds depend only on the Pfaffian complexity of the sets involved. As a corollary we deduce Wilkie’s original conjecture for $\mathbb{R}_{\rm exp}$ in full generality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Mathematics
Annals of Mathematics 数学-数学
CiteScore
9.10
自引率
2.00%
发文量
29
审稿时长
12 months
期刊介绍: The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信