S. S. Shabala, P. M. Yates-Jones, L. A. Jerrim, R. J. Turner, M. G. H. Krause, R. P. Norris, B. S. Koribalski, M. Filipović, L. Rudnick, C. Power, R. M. Crocker
{"title":"奇异射电圈是强大射电星系的凤凰吗?","authors":"S. S. Shabala, P. M. Yates-Jones, L. A. Jerrim, R. J. Turner, M. G. H. Krause, R. P. Norris, B. S. Koribalski, M. Filipović, L. Rudnick, C. Power, R. M. Crocker","doi":"10.1017/pasa.2024.11","DOIUrl":null,"url":null,"abstract":"Odd Radio Circles (ORCs) are a class of low surface brightness, circular objects approximately one arcminute in diameter. ORCs were recently discovered in the Australian Square Kilometre Array Pathfinder (ASKAP) data, and subsequently confirmed with follow-up observations on other instruments, yet their origins remain uncertain. In this paper, we suggest that ORCs could be remnant lobes of powerful radio galaxies, re-energised by the passage of a shock. Using relativistic hydrodynamic simulations with synchrotron emission calculated in post-processing, we show that buoyant evolution of remnant radio lobes is alone too slow to produce the observed ORC morphology. However, the passage of a shock can produce both filled and edge-brightnened ORC-like morphologies for a wide variety of shock and observing orientations. Circular ORCs are predicted to have host galaxies near the geometric centre of the radio emission, consistent with observations of these objects. Significantly offset hosts are possible for elliptical ORCs, potentially causing challenges for accurate host galaxy identification. Observed ORC number counts are broadly consistent with a paradigm in which moderately powerful radio galaxies are their progenitors.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Are Odd Radio Circles phoenixes of powerful radio galaxies?\",\"authors\":\"S. S. Shabala, P. M. Yates-Jones, L. A. Jerrim, R. J. Turner, M. G. H. Krause, R. P. Norris, B. S. Koribalski, M. Filipović, L. Rudnick, C. Power, R. M. Crocker\",\"doi\":\"10.1017/pasa.2024.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Odd Radio Circles (ORCs) are a class of low surface brightness, circular objects approximately one arcminute in diameter. ORCs were recently discovered in the Australian Square Kilometre Array Pathfinder (ASKAP) data, and subsequently confirmed with follow-up observations on other instruments, yet their origins remain uncertain. In this paper, we suggest that ORCs could be remnant lobes of powerful radio galaxies, re-energised by the passage of a shock. Using relativistic hydrodynamic simulations with synchrotron emission calculated in post-processing, we show that buoyant evolution of remnant radio lobes is alone too slow to produce the observed ORC morphology. However, the passage of a shock can produce both filled and edge-brightnened ORC-like morphologies for a wide variety of shock and observing orientations. Circular ORCs are predicted to have host galaxies near the geometric centre of the radio emission, consistent with observations of these objects. Significantly offset hosts are possible for elliptical ORCs, potentially causing challenges for accurate host galaxy identification. Observed ORC number counts are broadly consistent with a paradigm in which moderately powerful radio galaxies are their progenitors.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/pasa.2024.11\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/pasa.2024.11","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Are Odd Radio Circles phoenixes of powerful radio galaxies?
Odd Radio Circles (ORCs) are a class of low surface brightness, circular objects approximately one arcminute in diameter. ORCs were recently discovered in the Australian Square Kilometre Array Pathfinder (ASKAP) data, and subsequently confirmed with follow-up observations on other instruments, yet their origins remain uncertain. In this paper, we suggest that ORCs could be remnant lobes of powerful radio galaxies, re-energised by the passage of a shock. Using relativistic hydrodynamic simulations with synchrotron emission calculated in post-processing, we show that buoyant evolution of remnant radio lobes is alone too slow to produce the observed ORC morphology. However, the passage of a shock can produce both filled and edge-brightnened ORC-like morphologies for a wide variety of shock and observing orientations. Circular ORCs are predicted to have host galaxies near the geometric centre of the radio emission, consistent with observations of these objects. Significantly offset hosts are possible for elliptical ORCs, potentially causing challenges for accurate host galaxy identification. Observed ORC number counts are broadly consistent with a paradigm in which moderately powerful radio galaxies are their progenitors.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.