{"title":"有限环中的换乘概率和积零概率","authors":"Pavel Shumyatsky, Matteo Vannacci","doi":"10.1142/s0218196724500061","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">cp</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>R</mi><mo stretchy=\"false\">)</mo></math></span><span></span> be the probability that two random elements of a finite ring <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>R</mi></math></span><span></span> commute and <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">zp</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>R</mi><mo stretchy=\"false\">)</mo></math></span><span></span> the probability that the product of two random elements in <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>R</mi></math></span><span></span> is zero. We show that if <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">cp</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>R</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mi>𝜀</mi></math></span><span></span>, then there exists a Lie-ideal <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi></math></span><span></span> in the Lie-ring <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>R</mi><mo>,</mo><mo stretchy=\"false\">[</mo><mo stretchy=\"false\">⋅</mo><mo>,</mo><mo stretchy=\"false\">⋅</mo><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">)</mo></math></span><span></span> with <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜀</mi></math></span><span></span>-bounded index and with <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">[</mo><mi>D</mi><mo>,</mo><mi>D</mi><mo stretchy=\"false\">]</mo></math></span><span></span> of <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜀</mi></math></span><span></span>-bounded order. If <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">zp</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>R</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mi>𝜀</mi></math></span><span></span>, then there exists an ideal <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi></math></span><span></span> in <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>R</mi></math></span><span></span> with <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜀</mi></math></span><span></span>-bounded index and <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> of <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜀</mi></math></span><span></span>-bounded order. These results are analogous to the well-known theorem of Neumann on the commuting probability in finite groups.</p>","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":"29 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commuting and product-zero probability in finite rings\",\"authors\":\"Pavel Shumyatsky, Matteo Vannacci\",\"doi\":\"10.1142/s0218196724500061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">cp</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><mi>R</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> be the probability that two random elements of a finite ring <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>R</mi></math></span><span></span> commute and <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">zp</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><mi>R</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> the probability that the product of two random elements in <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>R</mi></math></span><span></span> is zero. We show that if <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">cp</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><mi>R</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mi>𝜀</mi></math></span><span></span>, then there exists a Lie-ideal <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>D</mi></math></span><span></span> in the Lie-ring <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>R</mi><mo>,</mo><mo stretchy=\\\"false\\\">[</mo><mo stretchy=\\\"false\\\">⋅</mo><mo>,</mo><mo stretchy=\\\"false\\\">⋅</mo><mo stretchy=\\\"false\\\">]</mo><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> with <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝜀</mi></math></span><span></span>-bounded index and with <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">[</mo><mi>D</mi><mo>,</mo><mi>D</mi><mo stretchy=\\\"false\\\">]</mo></math></span><span></span> of <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝜀</mi></math></span><span></span>-bounded order. If <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">zp</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><mi>R</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mi>𝜀</mi></math></span><span></span>, then there exists an ideal <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>D</mi></math></span><span></span> in <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>R</mi></math></span><span></span> with <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝜀</mi></math></span><span></span>-bounded index and <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> of <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝜀</mi></math></span><span></span>-bounded order. These results are analogous to the well-known theorem of Neumann on the commuting probability in finite groups.</p>\",\"PeriodicalId\":13756,\"journal\":{\"name\":\"International Journal of Algebra and Computation\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Algebra and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196724500061\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196724500061","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 cp(R) 是有限环 R 中两个随机元素相通的概率,zp(R) 是 R 中两个随机元素的乘积为零的概率。我们将证明,如果 cp(R)=𝜀 ,那么在李环(R,[⋅,⋅])中存在一个具有𝜀 边界索引和具有𝜀 边界阶的 [D,D] 的李偶像 D。如果 zp(R)=𝜀, 那么 R 中存在一个索引为𝜀 的理想 D,且 D2 的阶为𝜀。这些结果类似于诺伊曼关于有限群中交换概率的著名定理。
Commuting and product-zero probability in finite rings
Let be the probability that two random elements of a finite ring commute and the probability that the product of two random elements in is zero. We show that if , then there exists a Lie-ideal in the Lie-ring with -bounded index and with of -bounded order. If , then there exists an ideal in with -bounded index and of -bounded order. These results are analogous to the well-known theorem of Neumann on the commuting probability in finite groups.
期刊介绍:
The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.