Yi Sun, Hongjun Li, Daixi Liu, Xiaocheng Wang, Quanming Wang, Xiaoyu Cui, Jingfeng Fan
{"title":"底栖细菌群落显示长期海洋空间规划实践下沿海地区的人为活动足迹","authors":"Yi Sun, Hongjun Li, Daixi Liu, Xiaocheng Wang, Quanming Wang, Xiaoyu Cui, Jingfeng Fan","doi":"10.1007/s13131-023-2166-x","DOIUrl":null,"url":null,"abstract":"<p>Marine spatial planning (MSP) is designed to divide the sea area into different types of functional zones, to implement corresponding development activities. However, the long-term impacts of anthropogenic activities associated with MSP practice on the marine microbial biosphere are still unclear. Yalu River Estuary, a coastal region in northeast of China, has been divided into fishery & agricultural (F&A) zone, shipping & port (S&P) zone and marine protected area (MPA) zone by a local MSP guideline that has been run for decades. To examine the effects of long-term executed MSP, benthic bacterial communities from different MSP zones were obtained and compared in this study. The results revealed significant differences in the bacterial community structure and predict functions among different zones. Bacterial genera enriched in different zones were identified, including SBR1031 in MPA, <i>Woeseia</i> and Sva0996 in S&P, and <i>Halioglobus</i> in F&A. In addition, correlations between some bacterial genera and sediment pollutants were uncovered. Furthermore, bacteria related to sulphide production were more abundant in the F&A zone, which was according to the accumulation of sulphides in this area. Moreover, bacteria associated with chemoheterotrophy and fermentation were more predominant in the S&P zone, consistent with high levels of organic matter and petroleum caused by shipping. Our findings indicated benthic bacterial communities could bring to light the anthropogenic activity footprints by different activities induced by long-term MSP practice.</p>","PeriodicalId":6922,"journal":{"name":"Acta Oceanologica Sinica","volume":"21 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benthic bacterial communities indicate anthropogenic activity footprints in coastal area under long-term marine spatial planning practice\",\"authors\":\"Yi Sun, Hongjun Li, Daixi Liu, Xiaocheng Wang, Quanming Wang, Xiaoyu Cui, Jingfeng Fan\",\"doi\":\"10.1007/s13131-023-2166-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Marine spatial planning (MSP) is designed to divide the sea area into different types of functional zones, to implement corresponding development activities. However, the long-term impacts of anthropogenic activities associated with MSP practice on the marine microbial biosphere are still unclear. Yalu River Estuary, a coastal region in northeast of China, has been divided into fishery & agricultural (F&A) zone, shipping & port (S&P) zone and marine protected area (MPA) zone by a local MSP guideline that has been run for decades. To examine the effects of long-term executed MSP, benthic bacterial communities from different MSP zones were obtained and compared in this study. The results revealed significant differences in the bacterial community structure and predict functions among different zones. Bacterial genera enriched in different zones were identified, including SBR1031 in MPA, <i>Woeseia</i> and Sva0996 in S&P, and <i>Halioglobus</i> in F&A. In addition, correlations between some bacterial genera and sediment pollutants were uncovered. Furthermore, bacteria related to sulphide production were more abundant in the F&A zone, which was according to the accumulation of sulphides in this area. Moreover, bacteria associated with chemoheterotrophy and fermentation were more predominant in the S&P zone, consistent with high levels of organic matter and petroleum caused by shipping. Our findings indicated benthic bacterial communities could bring to light the anthropogenic activity footprints by different activities induced by long-term MSP practice.</p>\",\"PeriodicalId\":6922,\"journal\":{\"name\":\"Acta Oceanologica Sinica\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Oceanologica Sinica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s13131-023-2166-x\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oceanologica Sinica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13131-023-2166-x","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Benthic bacterial communities indicate anthropogenic activity footprints in coastal area under long-term marine spatial planning practice
Marine spatial planning (MSP) is designed to divide the sea area into different types of functional zones, to implement corresponding development activities. However, the long-term impacts of anthropogenic activities associated with MSP practice on the marine microbial biosphere are still unclear. Yalu River Estuary, a coastal region in northeast of China, has been divided into fishery & agricultural (F&A) zone, shipping & port (S&P) zone and marine protected area (MPA) zone by a local MSP guideline that has been run for decades. To examine the effects of long-term executed MSP, benthic bacterial communities from different MSP zones were obtained and compared in this study. The results revealed significant differences in the bacterial community structure and predict functions among different zones. Bacterial genera enriched in different zones were identified, including SBR1031 in MPA, Woeseia and Sva0996 in S&P, and Halioglobus in F&A. In addition, correlations between some bacterial genera and sediment pollutants were uncovered. Furthermore, bacteria related to sulphide production were more abundant in the F&A zone, which was according to the accumulation of sulphides in this area. Moreover, bacteria associated with chemoheterotrophy and fermentation were more predominant in the S&P zone, consistent with high levels of organic matter and petroleum caused by shipping. Our findings indicated benthic bacterial communities could bring to light the anthropogenic activity footprints by different activities induced by long-term MSP practice.
期刊介绍:
Founded in 1982, Acta Oceanologica Sinica is the official bi-monthly journal of the Chinese Society of Oceanography. It seeks to provide a forum for research papers in the field of oceanography from all over the world. In working to advance scholarly communication it has made the fast publication of high-quality research papers within this field its primary goal.
The journal encourages submissions from all branches of oceanography, including marine physics, marine chemistry, marine geology, marine biology, marine hydrology, marine meteorology, ocean engineering, marine remote sensing and marine environment sciences.
It publishes original research papers, review articles as well as research notes covering the whole spectrum of oceanography. Special issues emanating from related conferences and meetings are also considered. All papers are subject to peer review and are published online at SpringerLink.