{"title":"具有正向性的有簇玻雷阿诺索夫表征","authors":"Gye-Seon Lee, Tengren Zhang","doi":"10.1007/s10711-024-00895-2","DOIUrl":null,"url":null,"abstract":"<p>We show that if a cusped Borel Anosov representation from a lattice <span>\\(\\Gamma \\subset \\textsf{PGL}_2({{\\,\\mathrm{\\mathbb {R}}\\,}})\\)</span> to <span>\\(\\textsf{PGL}_d({{\\,\\mathrm{\\mathbb {R}}\\,}})\\)</span> contains a unipotent element with a single Jordan block in its image, then it is necessarily a (cusped) Hitchin representation. We also show that the amalgamation of a Hitchin representation with a cusped Borel Anosov representation that is not Hitchin is never cusped Borel Anosov.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cusped Borel Anosov representations with positivity\",\"authors\":\"Gye-Seon Lee, Tengren Zhang\",\"doi\":\"10.1007/s10711-024-00895-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that if a cusped Borel Anosov representation from a lattice <span>\\\\(\\\\Gamma \\\\subset \\\\textsf{PGL}_2({{\\\\,\\\\mathrm{\\\\mathbb {R}}\\\\,}})\\\\)</span> to <span>\\\\(\\\\textsf{PGL}_d({{\\\\,\\\\mathrm{\\\\mathbb {R}}\\\\,}})\\\\)</span> contains a unipotent element with a single Jordan block in its image, then it is necessarily a (cusped) Hitchin representation. We also show that the amalgamation of a Hitchin representation with a cusped Borel Anosov representation that is not Hitchin is never cusped Borel Anosov.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00895-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00895-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cusped Borel Anosov representations with positivity
We show that if a cusped Borel Anosov representation from a lattice \(\Gamma \subset \textsf{PGL}_2({{\,\mathrm{\mathbb {R}}\,}})\) to \(\textsf{PGL}_d({{\,\mathrm{\mathbb {R}}\,}})\) contains a unipotent element with a single Jordan block in its image, then it is necessarily a (cusped) Hitchin representation. We also show that the amalgamation of a Hitchin representation with a cusped Borel Anosov representation that is not Hitchin is never cusped Borel Anosov.