具有正向性的有簇玻雷阿诺索夫表征

Pub Date : 2024-03-06 DOI:10.1007/s10711-024-00895-2
Gye-Seon Lee, Tengren Zhang
{"title":"具有正向性的有簇玻雷阿诺索夫表征","authors":"Gye-Seon Lee, Tengren Zhang","doi":"10.1007/s10711-024-00895-2","DOIUrl":null,"url":null,"abstract":"<p>We show that if a cusped Borel Anosov representation from a lattice <span>\\(\\Gamma \\subset \\textsf{PGL}_2({{\\,\\mathrm{\\mathbb {R}}\\,}})\\)</span> to <span>\\(\\textsf{PGL}_d({{\\,\\mathrm{\\mathbb {R}}\\,}})\\)</span> contains a unipotent element with a single Jordan block in its image, then it is necessarily a (cusped) Hitchin representation. We also show that the amalgamation of a Hitchin representation with a cusped Borel Anosov representation that is not Hitchin is never cusped Borel Anosov.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cusped Borel Anosov representations with positivity\",\"authors\":\"Gye-Seon Lee, Tengren Zhang\",\"doi\":\"10.1007/s10711-024-00895-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that if a cusped Borel Anosov representation from a lattice <span>\\\\(\\\\Gamma \\\\subset \\\\textsf{PGL}_2({{\\\\,\\\\mathrm{\\\\mathbb {R}}\\\\,}})\\\\)</span> to <span>\\\\(\\\\textsf{PGL}_d({{\\\\,\\\\mathrm{\\\\mathbb {R}}\\\\,}})\\\\)</span> contains a unipotent element with a single Jordan block in its image, then it is necessarily a (cusped) Hitchin representation. We also show that the amalgamation of a Hitchin representation with a cusped Borel Anosov representation that is not Hitchin is never cusped Borel Anosov.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00895-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00895-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果一个从晶格 \(\Gamma \subset \textsf{PGL}_2({{\,\mathrm{\mathbb {R}}\})\) 到 \(\textsf{PGL}_d({{\、\)的图象中包含一个具有单个乔丹块的单能元,那么它必然是一个(尖顶)希金表示。我们还证明了希钦表示与非希钦的尖顶玻雷尔阿诺索夫表示的合并从来都不是尖顶玻雷尔阿诺索夫表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Cusped Borel Anosov representations with positivity

We show that if a cusped Borel Anosov representation from a lattice \(\Gamma \subset \textsf{PGL}_2({{\,\mathrm{\mathbb {R}}\,}})\) to \(\textsf{PGL}_d({{\,\mathrm{\mathbb {R}}\,}})\) contains a unipotent element with a single Jordan block in its image, then it is necessarily a (cusped) Hitchin representation. We also show that the amalgamation of a Hitchin representation with a cusped Borel Anosov representation that is not Hitchin is never cusped Borel Anosov.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信