算法 XXX:利用 SQUIC 进行稀疏精度矩阵估计

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Aryan Eftekhari, Lisa Gaedke-Merzhäuser, Dimosthenis Pasadakis, Matthias Bollhöfer, Simon Scheidegger, Olaf Schenk
{"title":"算法 XXX:利用 SQUIC 进行稀疏精度矩阵估计","authors":"Aryan Eftekhari, Lisa Gaedke-Merzhäuser, Dimosthenis Pasadakis, Matthias Bollhöfer, Simon Scheidegger, Olaf Schenk","doi":"10.1145/3650108","DOIUrl":null,"url":null,"abstract":"<p>We present <monospace>SQUIC</monospace>, a fast and scalable package for sparse precision matrix estimation. The algorithm employs a second-order method to solve the \\(\\ell_{1}\\)-regularized maximum likelihood problem, utilizing highly optimized linear algebra subroutines. In comparative tests using synthetic datasets, we demonstrate that <monospace>SQUIC</monospace> not only scales to datasets of up to a million random variables but also consistently delivers run times that are significantly faster than other well-established sparse precision matrix estimation packages. Furthermore, we showcase the application of the introduced package in classifying microarray gene expressions. We demonstrate that by utilizing a matrix form of the tuning parameter (also known as the regularization parameter), <monospace>SQUIC</monospace> can effectively incorporate prior information into the estimation procedure, resulting in improved application results with minimal computational overhead.</p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"21 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm XXX: Sparse Precision Matrix Estimation With SQUIC\",\"authors\":\"Aryan Eftekhari, Lisa Gaedke-Merzhäuser, Dimosthenis Pasadakis, Matthias Bollhöfer, Simon Scheidegger, Olaf Schenk\",\"doi\":\"10.1145/3650108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present <monospace>SQUIC</monospace>, a fast and scalable package for sparse precision matrix estimation. The algorithm employs a second-order method to solve the \\\\(\\\\ell_{1}\\\\)-regularized maximum likelihood problem, utilizing highly optimized linear algebra subroutines. In comparative tests using synthetic datasets, we demonstrate that <monospace>SQUIC</monospace> not only scales to datasets of up to a million random variables but also consistently delivers run times that are significantly faster than other well-established sparse precision matrix estimation packages. Furthermore, we showcase the application of the introduced package in classifying microarray gene expressions. We demonstrate that by utilizing a matrix form of the tuning parameter (also known as the regularization parameter), <monospace>SQUIC</monospace> can effectively incorporate prior information into the estimation procedure, resulting in improved application results with minimal computational overhead.</p>\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3650108\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3650108","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍的 SQUIC 是一个用于稀疏精度矩阵估计的快速、可扩展的软件包。该算法采用二阶方法来解决 \(\ell_{1}\)-regularized 最大似然问题,并利用高度优化的线性代数子程序。在使用合成数据集进行的对比测试中,我们证明 SQUIC 不仅可以扩展到多达一百万个随机变量的数据集,而且其运行时间始终比其他成熟的稀疏精度矩阵估计软件包快得多。此外,我们还展示了引入的软件包在微阵列基因表达分类中的应用。我们证明,通过利用矩阵形式的调整参数(也称为正则化参数),SQUIC 可以有效地将先验信息纳入估计过程,从而以最小的计算开销获得更好的应用结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm XXX: Sparse Precision Matrix Estimation With SQUIC

We present SQUIC, a fast and scalable package for sparse precision matrix estimation. The algorithm employs a second-order method to solve the \(\ell_{1}\)-regularized maximum likelihood problem, utilizing highly optimized linear algebra subroutines. In comparative tests using synthetic datasets, we demonstrate that SQUIC not only scales to datasets of up to a million random variables but also consistently delivers run times that are significantly faster than other well-established sparse precision matrix estimation packages. Furthermore, we showcase the application of the introduced package in classifying microarray gene expressions. We demonstrate that by utilizing a matrix form of the tuning parameter (also known as the regularization parameter), SQUIC can effectively incorporate prior information into the estimation procedure, resulting in improved application results with minimal computational overhead.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信