{"title":"主代数作用的玻尔混沌性与里兹积量","authors":"AI HUA FAN, KLAUS SCHMIDT, EVGENY VERBITSKIY","doi":"10.1017/etds.2024.13","DOIUrl":null,"url":null,"abstract":"<p>For a continuous <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305151712838-0085:S0143385724000130:S0143385724000130_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {N}^d$</span></span></img></span></span> or <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305151712838-0085:S0143385724000130:S0143385724000130_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Z}^d$</span></span></img></span></span> action on a compact space, we introduce the notion of Bohr chaoticity, which is an invariant of topological conjugacy and which is proved stronger than having positive entropy. We prove that all principal algebraic <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305151712838-0085:S0143385724000130:S0143385724000130_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Z}$</span></span></img></span></span> actions of positive entropy are Bohr chaotic. The same is proved for principal algebraic actions of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305151712838-0085:S0143385724000130:S0143385724000130_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Z}^d$</span></span></img></span></span> with positive entropy under the condition of existence of summable homoclinic points.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bohr chaoticity of principal algebraic actions and Riesz product measures\",\"authors\":\"AI HUA FAN, KLAUS SCHMIDT, EVGENY VERBITSKIY\",\"doi\":\"10.1017/etds.2024.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a continuous <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305151712838-0085:S0143385724000130:S0143385724000130_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {N}^d$</span></span></img></span></span> or <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305151712838-0085:S0143385724000130:S0143385724000130_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Z}^d$</span></span></img></span></span> action on a compact space, we introduce the notion of Bohr chaoticity, which is an invariant of topological conjugacy and which is proved stronger than having positive entropy. We prove that all principal algebraic <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305151712838-0085:S0143385724000130:S0143385724000130_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Z}$</span></span></img></span></span> actions of positive entropy are Bohr chaotic. The same is proved for principal algebraic actions of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305151712838-0085:S0143385724000130:S0143385724000130_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Z}^d$</span></span></img></span></span> with positive entropy under the condition of existence of summable homoclinic points.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bohr chaoticity of principal algebraic actions and Riesz product measures
For a continuous $\mathbb {N}^d$ or $\mathbb {Z}^d$ action on a compact space, we introduce the notion of Bohr chaoticity, which is an invariant of topological conjugacy and which is proved stronger than having positive entropy. We prove that all principal algebraic $\mathbb {Z}$ actions of positive entropy are Bohr chaotic. The same is proved for principal algebraic actions of $\mathbb {Z}^d$ with positive entropy under the condition of existence of summable homoclinic points.