主代数作用的玻尔混沌性与里兹积量

Pub Date : 2024-03-06 DOI:10.1017/etds.2024.13
AI HUA FAN, KLAUS SCHMIDT, EVGENY VERBITSKIY
{"title":"主代数作用的玻尔混沌性与里兹积量","authors":"AI HUA FAN, KLAUS SCHMIDT, EVGENY VERBITSKIY","doi":"10.1017/etds.2024.13","DOIUrl":null,"url":null,"abstract":"<p>For a continuous <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305151712838-0085:S0143385724000130:S0143385724000130_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {N}^d$</span></span></img></span></span> or <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305151712838-0085:S0143385724000130:S0143385724000130_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Z}^d$</span></span></img></span></span> action on a compact space, we introduce the notion of Bohr chaoticity, which is an invariant of topological conjugacy and which is proved stronger than having positive entropy. We prove that all principal algebraic <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305151712838-0085:S0143385724000130:S0143385724000130_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Z}$</span></span></img></span></span> actions of positive entropy are Bohr chaotic. The same is proved for principal algebraic actions of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305151712838-0085:S0143385724000130:S0143385724000130_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Z}^d$</span></span></img></span></span> with positive entropy under the condition of existence of summable homoclinic points.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bohr chaoticity of principal algebraic actions and Riesz product measures\",\"authors\":\"AI HUA FAN, KLAUS SCHMIDT, EVGENY VERBITSKIY\",\"doi\":\"10.1017/etds.2024.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a continuous <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305151712838-0085:S0143385724000130:S0143385724000130_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {N}^d$</span></span></img></span></span> or <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305151712838-0085:S0143385724000130:S0143385724000130_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Z}^d$</span></span></img></span></span> action on a compact space, we introduce the notion of Bohr chaoticity, which is an invariant of topological conjugacy and which is proved stronger than having positive entropy. We prove that all principal algebraic <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305151712838-0085:S0143385724000130:S0143385724000130_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Z}$</span></span></img></span></span> actions of positive entropy are Bohr chaotic. The same is proved for principal algebraic actions of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305151712838-0085:S0143385724000130:S0143385724000130_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Z}^d$</span></span></img></span></span> with positive entropy under the condition of existence of summable homoclinic points.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于紧凑空间上的连续 $\mathbb {N}^d$ 或 $\mathbb {Z}^d$ 作用,我们引入了玻尔混沌性的概念,它是拓扑共轭的一个不变量,并且被证明比具有正熵更强。我们证明了所有具有正熵的主代数 $\mathbb {Z}$ 作用都是玻尔混沌的。在存在可求和同偶点的条件下,同样证明了具有正熵的 $\mathbb {Z}^d$ 的主代数作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Bohr chaoticity of principal algebraic actions and Riesz product measures

For a continuous $\mathbb {N}^d$ or $\mathbb {Z}^d$ action on a compact space, we introduce the notion of Bohr chaoticity, which is an invariant of topological conjugacy and which is proved stronger than having positive entropy. We prove that all principal algebraic $\mathbb {Z}$ actions of positive entropy are Bohr chaotic. The same is proved for principal algebraic actions of $\mathbb {Z}^d$ with positive entropy under the condition of existence of summable homoclinic points.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信