加权面积最小超曲面的刚性结果

IF 0.6 3区 数学 Q3 MATHEMATICS
Sanghun Lee, Sangwoo Park, Juncheol Pyo
{"title":"加权面积最小超曲面的刚性结果","authors":"Sanghun Lee,&nbsp;Sangwoo Park,&nbsp;Juncheol Pyo","doi":"10.1007/s10455-024-09948-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove two rigidity results of hypersurfaces in <i>n</i>-dimensional weighted Riemannian manifolds with weighted scalar curvature bounded from below. Firstly, we establish a splitting theorem for the <i>n</i>-dimensional weighted Riemannian manifold via a weighted area-minimizing hypersurface. Secondly, we observe the topological invariance of the weighted stable hypersurface when the ambient weighted scalar curvature is bounded from below by a positive constant. In particular, we derive a non-existence result for a weighted stable hypersurface.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigidity results of weighted area-minimizing hypersurfaces\",\"authors\":\"Sanghun Lee,&nbsp;Sangwoo Park,&nbsp;Juncheol Pyo\",\"doi\":\"10.1007/s10455-024-09948-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we prove two rigidity results of hypersurfaces in <i>n</i>-dimensional weighted Riemannian manifolds with weighted scalar curvature bounded from below. Firstly, we establish a splitting theorem for the <i>n</i>-dimensional weighted Riemannian manifold via a weighted area-minimizing hypersurface. Secondly, we observe the topological invariance of the weighted stable hypersurface when the ambient weighted scalar curvature is bounded from below by a positive constant. In particular, we derive a non-existence result for a weighted stable hypersurface.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-024-09948-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-024-09948-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了 n 维加权黎曼流形中超曲面的两个刚性结果,这些超曲面的加权标量曲率自下而上是有界的。首先,我们通过加权面积最小超曲面建立了 n 维加权黎曼流形的分裂定理。其次,我们观察了当环境加权标量曲率自下而上受限于一个正常数时,加权稳定超曲面的拓扑不变性。特别是,我们推导出了加权稳定超曲面的不存在结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity results of weighted area-minimizing hypersurfaces

In this paper, we prove two rigidity results of hypersurfaces in n-dimensional weighted Riemannian manifolds with weighted scalar curvature bounded from below. Firstly, we establish a splitting theorem for the n-dimensional weighted Riemannian manifold via a weighted area-minimizing hypersurface. Secondly, we observe the topological invariance of the weighted stable hypersurface when the ambient weighted scalar curvature is bounded from below by a positive constant. In particular, we derive a non-existence result for a weighted stable hypersurface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信