通过改善冷凉地区长期变暖条件下的留绿性状和相关生理代谢来提高水稻产量

IF 2.1 3区 农林科学 Q2 AGRONOMY
{"title":"通过改善冷凉地区长期变暖条件下的留绿性状和相关生理代谢来提高水稻产量","authors":"","doi":"10.1007/s42106-024-00284-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Despite global warming, the response of rice yield to long-term warming in cool regions and its physiological mechanisms remain unknown. This study used the widely cultivated japonica rice Jiyang100 in Northeast China. Taking rice grown under natural temperatures as a control (CK), field warming treatments were conducted at the tillering-panicle initiation (T1), whole growth (T2), and grain-filling (T3) stages. The positive effects of T1, T2, and T3 on the total number of spikelets per hole increased the yield in both years, with average increases of 11.5%, 9.9% and 6.5% compared to CK, respectively. Warming treatments improved the stay-green traits, photosynthesis, sucrose synthesis, and nitrogen metabolism of rice. The yield was positively correlated with the relative chlorophyll content (SPAD), soluble sugar content, sucrose content, and the activities of sucrose phosphate synthase (SPS), nitrate reductase (NR), glutamine synthetase (GS), glutamine oxoglutarate aminotransferase (GOGAT) in flag leaves. In addition, SPAD had a positive correlation with soluble sugar content, soluble protein content, and the activities of NR, GS, GOGAT, glutamate dehydrogenase (GDH), but a negative correlation with acid invertase (AI) activity. The stay-green ability was positively correlated to the net photosynthetic rate (P<sub>n</sub>), soluble sugar content and soluble protein content. The coupling interactions of stay-green traits, nitrogen and carbon metabolism increased the yield potential and yield supply capacity, increased yield under long-term warming conditions in the cool regions. Under gradual warming, the physiological response of rice in cool regions promotes plant growth and development, thereby increasing yield.</p>","PeriodicalId":54947,"journal":{"name":"International Journal of Plant Production","volume":"61 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increased Rice Yield by Improving the Stay-green Traits and Related Physiological Metabolism under Long-term Warming in Cool Regions\",\"authors\":\"\",\"doi\":\"10.1007/s42106-024-00284-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Despite global warming, the response of rice yield to long-term warming in cool regions and its physiological mechanisms remain unknown. This study used the widely cultivated japonica rice Jiyang100 in Northeast China. Taking rice grown under natural temperatures as a control (CK), field warming treatments were conducted at the tillering-panicle initiation (T1), whole growth (T2), and grain-filling (T3) stages. The positive effects of T1, T2, and T3 on the total number of spikelets per hole increased the yield in both years, with average increases of 11.5%, 9.9% and 6.5% compared to CK, respectively. Warming treatments improved the stay-green traits, photosynthesis, sucrose synthesis, and nitrogen metabolism of rice. The yield was positively correlated with the relative chlorophyll content (SPAD), soluble sugar content, sucrose content, and the activities of sucrose phosphate synthase (SPS), nitrate reductase (NR), glutamine synthetase (GS), glutamine oxoglutarate aminotransferase (GOGAT) in flag leaves. In addition, SPAD had a positive correlation with soluble sugar content, soluble protein content, and the activities of NR, GS, GOGAT, glutamate dehydrogenase (GDH), but a negative correlation with acid invertase (AI) activity. The stay-green ability was positively correlated to the net photosynthetic rate (P<sub>n</sub>), soluble sugar content and soluble protein content. The coupling interactions of stay-green traits, nitrogen and carbon metabolism increased the yield potential and yield supply capacity, increased yield under long-term warming conditions in the cool regions. Under gradual warming, the physiological response of rice in cool regions promotes plant growth and development, thereby increasing yield.</p>\",\"PeriodicalId\":54947,\"journal\":{\"name\":\"International Journal of Plant Production\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plant Production\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s42106-024-00284-5\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plant Production","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42106-024-00284-5","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 尽管全球气候变暖,但冷凉地区水稻产量对长期变暖的响应及其生理机制仍然未知。本研究以中国东北地区广泛种植的粳稻 "吉阳100 "为研究对象。以自然温度下生长的水稻为对照(CK),在分蘖-穗粒始期(T1)、全生育期(T2)和籽粒灌浆期(T3)进行田间增温处理。T1、T2 和 T3 对每穴总穗数的积极影响提高了两年的产量,与 CK 相比,平均增幅分别为 11.5%、9.9% 和 6.5%。加温处理改善了水稻的留绿性状、光合作用、蔗糖合成和氮代谢。产量与旗叶中的相对叶绿素含量(SPAD)、可溶性糖含量、蔗糖含量以及蔗糖磷酸合成酶(SPS)、硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酰胺氧谷氨酸氨基转移酶(GOGAT)的活性呈正相关。此外,SPAD 与可溶性糖含量、可溶性蛋白质含量以及 NR、GS、GOGAT、谷氨酸脱氢酶(GDH)的活性呈正相关,但与酸转化酶(AI)的活性呈负相关。留绿能力与净光合速率(Pn)、可溶性糖含量和可溶性蛋白质含量呈正相关。在冷凉地区长期升温条件下,留绿性状、氮和碳代谢的耦合相互作用提高了产量潜力和产量供给能力,增加了产量。在逐渐变暖的条件下,冷凉地区水稻的生理反应促进了植株的生长发育,从而提高了产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increased Rice Yield by Improving the Stay-green Traits and Related Physiological Metabolism under Long-term Warming in Cool Regions

Abstract

Despite global warming, the response of rice yield to long-term warming in cool regions and its physiological mechanisms remain unknown. This study used the widely cultivated japonica rice Jiyang100 in Northeast China. Taking rice grown under natural temperatures as a control (CK), field warming treatments were conducted at the tillering-panicle initiation (T1), whole growth (T2), and grain-filling (T3) stages. The positive effects of T1, T2, and T3 on the total number of spikelets per hole increased the yield in both years, with average increases of 11.5%, 9.9% and 6.5% compared to CK, respectively. Warming treatments improved the stay-green traits, photosynthesis, sucrose synthesis, and nitrogen metabolism of rice. The yield was positively correlated with the relative chlorophyll content (SPAD), soluble sugar content, sucrose content, and the activities of sucrose phosphate synthase (SPS), nitrate reductase (NR), glutamine synthetase (GS), glutamine oxoglutarate aminotransferase (GOGAT) in flag leaves. In addition, SPAD had a positive correlation with soluble sugar content, soluble protein content, and the activities of NR, GS, GOGAT, glutamate dehydrogenase (GDH), but a negative correlation with acid invertase (AI) activity. The stay-green ability was positively correlated to the net photosynthetic rate (Pn), soluble sugar content and soluble protein content. The coupling interactions of stay-green traits, nitrogen and carbon metabolism increased the yield potential and yield supply capacity, increased yield under long-term warming conditions in the cool regions. Under gradual warming, the physiological response of rice in cool regions promotes plant growth and development, thereby increasing yield.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
4.00%
发文量
46
审稿时长
6 months
期刊介绍: IJPP publishes original research papers and review papers related to physiology, ecology and production of field crops and forages at field, farm and landscape level. Preferred topics are: (1) yield gap in cropping systems: estimation, causes and closing measures, (2) ecological intensification of plant production, (3) improvement of water and nutrients management in plant production systems, (4) environmental impact of plant production, (5) climate change and plant production, and (6) responses of plant communities to extreme weather conditions. Please note that IJPP does not publish papers with a background in genetics and plant breeding, plant molecular biology, plant biotechnology, as well as soil science, meteorology, product process and post-harvest management unless they are strongly related to plant production under field conditions. Papers based on limited data or of local importance, and results from routine experiments will not normally be considered for publication. Field experiments should include at least two years and/or two environments. Papers on plants other than field crops and forages, and papers based on controlled-environment experiments will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信