有测量误差的右删失非参数回归

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Metrika Pub Date : 2024-03-05 DOI:10.1007/s00184-024-00953-5
Dursun Aydın, Ersin Yılmaz, Nur Chamidah, Budi Lestari, I. Nyoman Budiantara
{"title":"有测量误差的右删失非参数回归","authors":"Dursun Aydın, Ersin Yılmaz, Nur Chamidah, Budi Lestari, I. Nyoman Budiantara","doi":"10.1007/s00184-024-00953-5","DOIUrl":null,"url":null,"abstract":"<p>This study focuses on estimating a nonparametric regression model with right-censored data when the covariate is subject to measurement error. To achieve this goal, it is necessary to solve the problems of censorship and measurement error ignored by many researchers. Note that the presence of measurement errors causes biased and inconsistent parameter estimates. Moreover, non-parametric regression techniques cannot be applied directly to right-censored observations. In this context, we consider an updated response variable using the Buckley–James method (BJM), which is essentially based on the Kaplan–Meier estimator, to solve the censorship problem. Then the measurement error problem is handled using the kernel deconvolution method, which is a specialized tool to solve this problem. Accordingly, three denconvoluted estimators based on BJM are introduced using kernel smoothing, local polynomial smoothing, and B-spline techniques that incorporate both the updated response variable and kernel deconvolution.The performances of these estimators are compared in a detailed simulation study. In addition, a real-world data example is presented using the Covid-19 dataset.</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Right-censored nonparametric regression with measurement error\",\"authors\":\"Dursun Aydın, Ersin Yılmaz, Nur Chamidah, Budi Lestari, I. Nyoman Budiantara\",\"doi\":\"10.1007/s00184-024-00953-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study focuses on estimating a nonparametric regression model with right-censored data when the covariate is subject to measurement error. To achieve this goal, it is necessary to solve the problems of censorship and measurement error ignored by many researchers. Note that the presence of measurement errors causes biased and inconsistent parameter estimates. Moreover, non-parametric regression techniques cannot be applied directly to right-censored observations. In this context, we consider an updated response variable using the Buckley–James method (BJM), which is essentially based on the Kaplan–Meier estimator, to solve the censorship problem. Then the measurement error problem is handled using the kernel deconvolution method, which is a specialized tool to solve this problem. Accordingly, three denconvoluted estimators based on BJM are introduced using kernel smoothing, local polynomial smoothing, and B-spline techniques that incorporate both the updated response variable and kernel deconvolution.The performances of these estimators are compared in a detailed simulation study. In addition, a real-world data example is presented using the Covid-19 dataset.</p>\",\"PeriodicalId\":49821,\"journal\":{\"name\":\"Metrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-024-00953-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-024-00953-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是在协变量存在测量误差的情况下,利用右删失数据估计非参数回归模型。要实现这一目标,就必须解决许多研究人员忽视的删减和测量误差问题。需要注意的是,测量误差的存在会导致参数估计的偏差和不一致。此外,非参数回归技术无法直接应用于右删失观测值。在这种情况下,我们考虑使用 Buckley-James 方法(BJM)(该方法本质上基于 Kaplan-Meier 估计器)更新响应变量,以解决删减问题。然后使用核卷积法来处理测量误差问题,核卷积法是解决这一问题的专门工具。因此,在 BJM 的基础上,使用核平滑、局部多项式平滑和 B-样条技术引入了三种去卷积估计器,这些估计器同时包含了更新的响应变量和核卷积。此外,还介绍了一个使用 Covid-19 数据集的实际数据示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Right-censored nonparametric regression with measurement error

Right-censored nonparametric regression with measurement error

This study focuses on estimating a nonparametric regression model with right-censored data when the covariate is subject to measurement error. To achieve this goal, it is necessary to solve the problems of censorship and measurement error ignored by many researchers. Note that the presence of measurement errors causes biased and inconsistent parameter estimates. Moreover, non-parametric regression techniques cannot be applied directly to right-censored observations. In this context, we consider an updated response variable using the Buckley–James method (BJM), which is essentially based on the Kaplan–Meier estimator, to solve the censorship problem. Then the measurement error problem is handled using the kernel deconvolution method, which is a specialized tool to solve this problem. Accordingly, three denconvoluted estimators based on BJM are introduced using kernel smoothing, local polynomial smoothing, and B-spline techniques that incorporate both the updated response variable and kernel deconvolution.The performances of these estimators are compared in a detailed simulation study. In addition, a real-world data example is presented using the Covid-19 dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metrika
Metrika 数学-统计学与概率论
CiteScore
1.50
自引率
14.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信