{"title":"关于二次方程","authors":"ELCHIN HASANALIZADE","doi":"10.1017/s0004972724000066","DOIUrl":null,"url":null,"abstract":"<p>A generalisation of the well-known Pell sequence <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\{P_n\\}_{n\\ge 0}$</span></span></img></span></span> given by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$P_0=0$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$P_1=1$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$P_{n+2}=2P_{n+1}+P_n$</span></span></img></span></span> for all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$n\\ge 0$</span></span></img></span></span> is the <span>k</span>-generalised Pell sequence <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\{P^{(k)}_n\\}_{n\\ge -(k-2)}$</span></span></img></span></span> whose first <span>k</span> terms are <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$0,\\ldots ,0,1$</span></span></img></span></span> and each term afterwards is given by the linear recurrence <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$P^{(k)}_n=2P^{(k)}_{n-1}+P^{(k)}_{n-2}+\\cdots +P^{(k)}_{n-k}$</span></span></img></span></span>. For the Pell sequence, the formula <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$P^2_n+P^2_{n+1}=P_{2n+1}$</span></span></img></span></span> holds for all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$n\\ge 0$</span></span></img></span></span>. In this paper, we prove that the Diophantine equation <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*} (P^{(k)}_n)^2+(P^{(k)}_{n+1})^2=P^{(k)}_m \\end{align*} $$</span></span></img></span></p><p>has no solution in positive integers <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$k, m$</span></span></span></span> and <span>n</span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$n>1$</span></span></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline14.png\"/><span data-mathjax-type=\"texmath\"><span>$k\\ge 3$</span></span></span></span>.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"138 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE DIOPHANTINE EQUATION\",\"authors\":\"ELCHIN HASANALIZADE\",\"doi\":\"10.1017/s0004972724000066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A generalisation of the well-known Pell sequence <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\{P_n\\\\}_{n\\\\ge 0}$</span></span></img></span></span> given by <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$P_0=0$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$P_1=1$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$P_{n+2}=2P_{n+1}+P_n$</span></span></img></span></span> for all <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n\\\\ge 0$</span></span></img></span></span> is the <span>k</span>-generalised Pell sequence <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\{P^{(k)}_n\\\\}_{n\\\\ge -(k-2)}$</span></span></img></span></span> whose first <span>k</span> terms are <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$0,\\\\ldots ,0,1$</span></span></img></span></span> and each term afterwards is given by the linear recurrence <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$P^{(k)}_n=2P^{(k)}_{n-1}+P^{(k)}_{n-2}+\\\\cdots +P^{(k)}_{n-k}$</span></span></img></span></span>. For the Pell sequence, the formula <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$P^2_n+P^2_{n+1}=P_{2n+1}$</span></span></img></span></span> holds for all <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n\\\\ge 0$</span></span></img></span></span>. In this paper, we prove that the Diophantine equation <span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_eqnu1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$$ \\\\begin{align*} (P^{(k)}_n)^2+(P^{(k)}_{n+1})^2=P^{(k)}_m \\\\end{align*} $$</span></span></img></span></p><p>has no solution in positive integers <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline12.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$k, m$</span></span></span></span> and <span>n</span> with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline13.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$n>1$</span></span></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline14.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$k\\\\ge 3$</span></span></span></span>.</p>\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"138 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000066\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000066","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A generalisation of the well-known Pell sequence $\{P_n\}_{n\ge 0}$ given by $P_0=0$, $P_1=1$ and $P_{n+2}=2P_{n+1}+P_n$ for all $n\ge 0$ is the k-generalised Pell sequence $\{P^{(k)}_n\}_{n\ge -(k-2)}$ whose first k terms are $0,\ldots ,0,1$ and each term afterwards is given by the linear recurrence $P^{(k)}_n=2P^{(k)}_{n-1}+P^{(k)}_{n-2}+\cdots +P^{(k)}_{n-k}$. For the Pell sequence, the formula $P^2_n+P^2_{n+1}=P_{2n+1}$ holds for all $n\ge 0$. In this paper, we prove that the Diophantine equation $$ \begin{align*} (P^{(k)}_n)^2+(P^{(k)}_{n+1})^2=P^{(k)}_m \end{align*} $$
has no solution in positive integers $k, m$ and n with $n>1$ and $k\ge 3$.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society