关于二次方程

IF 0.6 4区 数学 Q3 MATHEMATICS
ELCHIN HASANALIZADE
{"title":"关于二次方程","authors":"ELCHIN HASANALIZADE","doi":"10.1017/s0004972724000066","DOIUrl":null,"url":null,"abstract":"<p>A generalisation of the well-known Pell sequence <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\{P_n\\}_{n\\ge 0}$</span></span></img></span></span> given by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$P_0=0$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$P_1=1$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$P_{n+2}=2P_{n+1}+P_n$</span></span></img></span></span> for all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$n\\ge 0$</span></span></img></span></span> is the <span>k</span>-generalised Pell sequence <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\{P^{(k)}_n\\}_{n\\ge -(k-2)}$</span></span></img></span></span> whose first <span>k</span> terms are <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$0,\\ldots ,0,1$</span></span></img></span></span> and each term afterwards is given by the linear recurrence <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$P^{(k)}_n=2P^{(k)}_{n-1}+P^{(k)}_{n-2}+\\cdots +P^{(k)}_{n-k}$</span></span></img></span></span>. For the Pell sequence, the formula <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$P^2_n+P^2_{n+1}=P_{2n+1}$</span></span></img></span></span> holds for all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$n\\ge 0$</span></span></img></span></span>. In this paper, we prove that the Diophantine equation <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*} (P^{(k)}_n)^2+(P^{(k)}_{n+1})^2=P^{(k)}_m \\end{align*} $$</span></span></img></span></p><p>has no solution in positive integers <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$k, m$</span></span></span></span> and <span>n</span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$n&gt;1$</span></span></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline14.png\"/><span data-mathjax-type=\"texmath\"><span>$k\\ge 3$</span></span></span></span>.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE DIOPHANTINE EQUATION\",\"authors\":\"ELCHIN HASANALIZADE\",\"doi\":\"10.1017/s0004972724000066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A generalisation of the well-known Pell sequence <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\{P_n\\\\}_{n\\\\ge 0}$</span></span></img></span></span> given by <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$P_0=0$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$P_1=1$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$P_{n+2}=2P_{n+1}+P_n$</span></span></img></span></span> for all <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n\\\\ge 0$</span></span></img></span></span> is the <span>k</span>-generalised Pell sequence <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\{P^{(k)}_n\\\\}_{n\\\\ge -(k-2)}$</span></span></img></span></span> whose first <span>k</span> terms are <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$0,\\\\ldots ,0,1$</span></span></img></span></span> and each term afterwards is given by the linear recurrence <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$P^{(k)}_n=2P^{(k)}_{n-1}+P^{(k)}_{n-2}+\\\\cdots +P^{(k)}_{n-k}$</span></span></img></span></span>. For the Pell sequence, the formula <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$P^2_n+P^2_{n+1}=P_{2n+1}$</span></span></img></span></span> holds for all <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n\\\\ge 0$</span></span></img></span></span>. In this paper, we prove that the Diophantine equation <span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_eqnu1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$$ \\\\begin{align*} (P^{(k)}_n)^2+(P^{(k)}_{n+1})^2=P^{(k)}_m \\\\end{align*} $$</span></span></img></span></p><p>has no solution in positive integers <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline12.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$k, m$</span></span></span></span> and <span>n</span> with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline13.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$n&gt;1$</span></span></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305093818166-0200:S0004972724000066:S0004972724000066_inline14.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$k\\\\ge 3$</span></span></span></span>.</p>\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000066\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000066","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于所有 $n\ge 0$,由 $P_0=0$,$P_1=1$ 和 $P_{n+2}=2P_{n+1}+P_n$ 给出的众所周知的 Pell 序列 $\{P_n\}_{n\ge 0}$的广义化是 k 个广义 Pell 序列 $\{P^{(k)}_n\}_{n\ge -(k-2)}$ ,其前 k 项为 $0、\ldots ,0,1$,之后的每项由线性递推公式$P^{(k)}_n=2P^{(k)}_{n-1}+P^{(k)}_{n-2}+\cdots +P^{(k)}_{n-k}$给出。对于佩尔序列,公式 $P^2_n+P^2_{n+1}=P_{2n+1}$ 对于所有 $n\ge 0$ 都成立。本文将证明 Diophantine 方程 $$ \begin{align*} (P^{(k)}_n)^2+(P^{(k)}_{n+1})^2=P^{(k)}_m \end{align*}在正整数 $k、m$ 和 n 中,$n>1$ 和 $k\ge 3$ 无解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE DIOPHANTINE EQUATION

A generalisation of the well-known Pell sequence $\{P_n\}_{n\ge 0}$ given by $P_0=0$, $P_1=1$ and $P_{n+2}=2P_{n+1}+P_n$ for all $n\ge 0$ is the k-generalised Pell sequence $\{P^{(k)}_n\}_{n\ge -(k-2)}$ whose first k terms are $0,\ldots ,0,1$ and each term afterwards is given by the linear recurrence $P^{(k)}_n=2P^{(k)}_{n-1}+P^{(k)}_{n-2}+\cdots +P^{(k)}_{n-k}$. For the Pell sequence, the formula $P^2_n+P^2_{n+1}=P_{2n+1}$ holds for all $n\ge 0$. In this paper, we prove that the Diophantine equation $$ \begin{align*} (P^{(k)}_n)^2+(P^{(k)}_{n+1})^2=P^{(k)}_m \end{align*} $$

has no solution in positive integers $k, m$ and n with $n>1$ and $k\ge 3$.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信