考虑地下水的分层分数粘弹性土的固结行为

IF 3.4 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Zhi Yong Ai, Zi Kun Ye, Ming Jing Jiang, Qing Song Lu
{"title":"考虑地下水的分层分数粘弹性土的固结行为","authors":"Zhi Yong Ai,&nbsp;Zi Kun Ye,&nbsp;Ming Jing Jiang,&nbsp;Qing Song Lu","doi":"10.1002/nag.3721","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the consolidation behavior of multi-layered viscoelastic soils considering groundwater. First, the fractional Merchant viscoelastic model is introduced to describe the behavior of multi-layered viscoelastic soils considering groundwater. Later, the governing equations are extended to a viscoelastic medium by virtue of the elastic-viscoelastic corresponding principle in the Laplace–Hankel domain. According to the extended precise integration method, the soil layer is divided into a series of layer units. Then the relationship between general stress vector and general displacement vector on the top and bottom planes is established. Every two adjacent layer units are combined into one layer in each computational iteration. The solutions in the Laplace–Hankel domain are obtained by considering the boundary conditions, and numerical inversion is performed to obtain the solutions in the physical domain. The practicability of the present method is assessed by comparing the numerical results with those in the existing literature and done by ABAQUS. Finally, the effects of groundwater table, properties of the soils above groundwater table, load depth, viscoelastic parameters, and soil stratification are investigated.</p>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The consolidation behavior of layered fractional viscoelastic soils considering groundwater\",\"authors\":\"Zhi Yong Ai,&nbsp;Zi Kun Ye,&nbsp;Ming Jing Jiang,&nbsp;Qing Song Lu\",\"doi\":\"10.1002/nag.3721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the consolidation behavior of multi-layered viscoelastic soils considering groundwater. First, the fractional Merchant viscoelastic model is introduced to describe the behavior of multi-layered viscoelastic soils considering groundwater. Later, the governing equations are extended to a viscoelastic medium by virtue of the elastic-viscoelastic corresponding principle in the Laplace–Hankel domain. According to the extended precise integration method, the soil layer is divided into a series of layer units. Then the relationship between general stress vector and general displacement vector on the top and bottom planes is established. Every two adjacent layer units are combined into one layer in each computational iteration. The solutions in the Laplace–Hankel domain are obtained by considering the boundary conditions, and numerical inversion is performed to obtain the solutions in the physical domain. The practicability of the present method is assessed by comparing the numerical results with those in the existing literature and done by ABAQUS. Finally, the effects of groundwater table, properties of the soils above groundwater table, load depth, viscoelastic parameters, and soil stratification are investigated.</p>\",\"PeriodicalId\":13786,\"journal\":{\"name\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nag.3721\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3721","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了考虑地下水的多层粘弹性土的固结行为。首先,引入分数商粘弹性模型来描述考虑地下水的多层粘弹性土的行为。随后,根据拉普拉斯-汉克尔域中的弹性-粘弹性对应原理,将控制方程扩展到粘弹性介质。根据扩展精确积分法,土层被划分为一系列层单元。然后建立顶面和底面上的一般应力矢量和一般位移矢量之间的关系。在每次计算迭代中,每两个相邻的层单元合并为一层。通过考虑边界条件,得到拉普拉斯-汉克尔域中的解,然后进行数值反演,得到物理域中的解。通过将数值结果与现有文献和 ABAQUS 所做的结果进行比较,评估了本方法的实用性。最后,研究了地下水位、地下水位以上土壤性质、荷载深度、粘弹性参数和土壤分层的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The consolidation behavior of layered fractional viscoelastic soils considering groundwater

This paper investigates the consolidation behavior of multi-layered viscoelastic soils considering groundwater. First, the fractional Merchant viscoelastic model is introduced to describe the behavior of multi-layered viscoelastic soils considering groundwater. Later, the governing equations are extended to a viscoelastic medium by virtue of the elastic-viscoelastic corresponding principle in the Laplace–Hankel domain. According to the extended precise integration method, the soil layer is divided into a series of layer units. Then the relationship between general stress vector and general displacement vector on the top and bottom planes is established. Every two adjacent layer units are combined into one layer in each computational iteration. The solutions in the Laplace–Hankel domain are obtained by considering the boundary conditions, and numerical inversion is performed to obtain the solutions in the physical domain. The practicability of the present method is assessed by comparing the numerical results with those in the existing literature and done by ABAQUS. Finally, the effects of groundwater table, properties of the soils above groundwater table, load depth, viscoelastic parameters, and soil stratification are investigated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
12.50%
发文量
160
审稿时长
9 months
期刊介绍: The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信