{"title":"轴平行超平面和其他物体上的红蓝套覆盖问题","authors":"V.P. Abidha , Pradeesha Ashok","doi":"10.1016/j.ipl.2024.106485","DOIUrl":null,"url":null,"abstract":"<div><p>Given a universe <span><math><mi>U</mi><mo>=</mo><mi>R</mi><mo>∪</mo><mi>B</mi></math></span> of a finite set of red elements <em>R</em>, and a finite set of blue elements <em>B</em> and a family <span><math><mi>F</mi></math></span> of subsets of <span><math><mi>U</mi></math></span>, the <span>Red Blue Set Cover</span> problem is to find a subset <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of <span><math><mi>F</mi></math></span> that covers all blue elements of <em>B</em> and minimum number of red elements from <em>R</em>.</p><p>We prove that the <span>Red Blue Set Cover</span> problem is NP-hard even when <em>R</em> and <em>B</em> respectively are sets of red and blue points in <span><math><msup><mrow><mi>IR</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and the sets in <span><math><mi>F</mi></math></span> are defined by axis−parallel lines i.e., every set is a maximal set of points with the same <em>x</em> or <em>y</em> coordinate.</p><p>We then study the parameterized complexity of a generalization of this problem, where <span><math><mi>U</mi></math></span> is a set of points in <span><math><msup><mrow><mi>IR</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and <span><math><mi>F</mi></math></span> is a collection of set of axis−parallel hyperplanes in <span><math><msup><mrow><mi>IR</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> under different parameterizations, where <em>d</em> is a constant. For every parameter, we show that the problem is fixed-parameter tractable and also show the existence of a polynomial kernel. We further consider the <span>Red Blue Set Cover</span> problem for some special types of rectangles in <span><math><msup><mrow><mi>IR</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"186 ","pages":"Article 106485"},"PeriodicalIF":0.7000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Red Blue Set Cover problem on axis-parallel hyperplanes and other objects\",\"authors\":\"V.P. Abidha , Pradeesha Ashok\",\"doi\":\"10.1016/j.ipl.2024.106485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a universe <span><math><mi>U</mi><mo>=</mo><mi>R</mi><mo>∪</mo><mi>B</mi></math></span> of a finite set of red elements <em>R</em>, and a finite set of blue elements <em>B</em> and a family <span><math><mi>F</mi></math></span> of subsets of <span><math><mi>U</mi></math></span>, the <span>Red Blue Set Cover</span> problem is to find a subset <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of <span><math><mi>F</mi></math></span> that covers all blue elements of <em>B</em> and minimum number of red elements from <em>R</em>.</p><p>We prove that the <span>Red Blue Set Cover</span> problem is NP-hard even when <em>R</em> and <em>B</em> respectively are sets of red and blue points in <span><math><msup><mrow><mi>IR</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and the sets in <span><math><mi>F</mi></math></span> are defined by axis−parallel lines i.e., every set is a maximal set of points with the same <em>x</em> or <em>y</em> coordinate.</p><p>We then study the parameterized complexity of a generalization of this problem, where <span><math><mi>U</mi></math></span> is a set of points in <span><math><msup><mrow><mi>IR</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and <span><math><mi>F</mi></math></span> is a collection of set of axis−parallel hyperplanes in <span><math><msup><mrow><mi>IR</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> under different parameterizations, where <em>d</em> is a constant. For every parameter, we show that the problem is fixed-parameter tractable and also show the existence of a polynomial kernel. We further consider the <span>Red Blue Set Cover</span> problem for some special types of rectangles in <span><math><msup><mrow><mi>IR</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>.</p></div>\",\"PeriodicalId\":56290,\"journal\":{\"name\":\"Information Processing Letters\",\"volume\":\"186 \",\"pages\":\"Article 106485\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020019024000152\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019024000152","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
给定一个由有限红色元素集 R 和有限蓝色元素集 B 组成的宇宙 U=R∪B,以及 U 的子集族 F,红蓝集合覆盖问题就是找到 F 的子集 F′,该子集覆盖 B 中的所有蓝色元素和 R 中的最少红色元素。我们证明,即使 R 和 B 分别是 IR2 中的红色点集和蓝色点集,且 F 中的集合是由轴平行线定义的,即每个集合都是相同 x 或 y 坐标的最大点集,红蓝集合覆盖问题也是 NP 难的、然后,我们研究了该问题的广义参数化复杂度,其中 U 是 IRd 中的点集,F 是 IRd 中轴平行超平面集的集合。对于每个参数,我们都证明了该问题的固定参数可操作性,并证明了多项式内核的存在。我们进一步考虑了 IR2 中一些特殊类型矩形的红蓝集合覆盖问题。
Red Blue Set Cover problem on axis-parallel hyperplanes and other objects
Given a universe of a finite set of red elements R, and a finite set of blue elements B and a family of subsets of , the Red Blue Set Cover problem is to find a subset of that covers all blue elements of B and minimum number of red elements from R.
We prove that the Red Blue Set Cover problem is NP-hard even when R and B respectively are sets of red and blue points in and the sets in are defined by axis−parallel lines i.e., every set is a maximal set of points with the same x or y coordinate.
We then study the parameterized complexity of a generalization of this problem, where is a set of points in and is a collection of set of axis−parallel hyperplanes in under different parameterizations, where d is a constant. For every parameter, we show that the problem is fixed-parameter tractable and also show the existence of a polynomial kernel. We further consider the Red Blue Set Cover problem for some special types of rectangles in .
期刊介绍:
Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered.
Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.