通过神经网络建立多人群的定量死亡率模型

IF 1.9 2区 经济学 Q2 ECONOMICS
Stefania Corsaro, Zelda Marino, Salvatore Scognamiglio
{"title":"通过神经网络建立多人群的定量死亡率模型","authors":"Stefania Corsaro,&nbsp;Zelda Marino,&nbsp;Salvatore Scognamiglio","doi":"10.1016/j.insmatheco.2024.02.007","DOIUrl":null,"url":null,"abstract":"<div><p>Quantiles of the mortality rates are relevant in life insurance to control longevity risk properly. Recently, <span>Santolino (2020)</span> adapts the framework of the popular Lee-Carter model to compute the conditional quantiles of the mortality rates. The parameters of the quantile Lee-Carter model are fitted on the mortality data of the population of interest, ignoring the information related to the others. In this paper, we show that more robust parameter estimates can be obtained exploiting the mortality experiences of multiple populations. A neural network is employed to calibrate individual quantile Lee-Carter models jointly using all the available mortality data. In this setting, some common network parameters are used to learn the age and period effects of multiple quantile LC models. Numerical experiments performed on all the countries of the Human Mortality Database validate our approach. The predictions obtained considering the median level appear more accurate than those obtained with the mean models; moreover, those at the tail quantile levels capture the future mortality evolution of the populations well.</p></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"116 ","pages":"Pages 114-133"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantile mortality modelling of multiple populations via neural networks\",\"authors\":\"Stefania Corsaro,&nbsp;Zelda Marino,&nbsp;Salvatore Scognamiglio\",\"doi\":\"10.1016/j.insmatheco.2024.02.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantiles of the mortality rates are relevant in life insurance to control longevity risk properly. Recently, <span>Santolino (2020)</span> adapts the framework of the popular Lee-Carter model to compute the conditional quantiles of the mortality rates. The parameters of the quantile Lee-Carter model are fitted on the mortality data of the population of interest, ignoring the information related to the others. In this paper, we show that more robust parameter estimates can be obtained exploiting the mortality experiences of multiple populations. A neural network is employed to calibrate individual quantile Lee-Carter models jointly using all the available mortality data. In this setting, some common network parameters are used to learn the age and period effects of multiple quantile LC models. Numerical experiments performed on all the countries of the Human Mortality Database validate our approach. The predictions obtained considering the median level appear more accurate than those obtained with the mean models; moreover, those at the tail quantile levels capture the future mortality evolution of the populations well.</p></div>\",\"PeriodicalId\":54974,\"journal\":{\"name\":\"Insurance Mathematics & Economics\",\"volume\":\"116 \",\"pages\":\"Pages 114-133\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insurance Mathematics & Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167668724000337\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668724000337","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

在人寿保险中,死亡率的量化与适当控制长寿风险息息相关。最近,Santolino(2020 年)对流行的 Lee-Carter 模型框架进行了调整,以计算死亡率的条件量化值。量化 Lee-Carter 模型的参数是根据相关人群的死亡率数据拟合的,忽略了与其他人群相关的信息。在本文中,我们展示了利用多人群的死亡率经验可以获得更稳健的参数估计。我们采用神经网络,利用所有可用的死亡率数据共同校准各个量化 Lee-Carter 模型。在这种情况下,一些共同的网络参数被用来学习多个量化 Lee-Carter 模型的年龄和时期效应。在人类死亡率数据库的所有国家进行的数值实验验证了我们的方法。中位数水平的预测结果比平均值模型的预测结果更加准确;此外,尾部量化水平的预测结果很好地捕捉到了人口未来的死亡率演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantile mortality modelling of multiple populations via neural networks

Quantiles of the mortality rates are relevant in life insurance to control longevity risk properly. Recently, Santolino (2020) adapts the framework of the popular Lee-Carter model to compute the conditional quantiles of the mortality rates. The parameters of the quantile Lee-Carter model are fitted on the mortality data of the population of interest, ignoring the information related to the others. In this paper, we show that more robust parameter estimates can be obtained exploiting the mortality experiences of multiple populations. A neural network is employed to calibrate individual quantile Lee-Carter models jointly using all the available mortality data. In this setting, some common network parameters are used to learn the age and period effects of multiple quantile LC models. Numerical experiments performed on all the countries of the Human Mortality Database validate our approach. The predictions obtained considering the median level appear more accurate than those obtained with the mean models; moreover, those at the tail quantile levels capture the future mortality evolution of the populations well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insurance Mathematics & Economics
Insurance Mathematics & Economics 管理科学-数学跨学科应用
CiteScore
3.40
自引率
15.80%
发文量
90
审稿时长
17.3 weeks
期刊介绍: Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world. Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信