Sanghee Lee, Ji Hyun Kim, Hyeong In Ha, Myong Cheol Lim, Hyunsoon Cho
{"title":"开发基于规则的自动算法,从电子健康记录中检测卵巢癌复发。","authors":"Sanghee Lee, Ji Hyun Kim, Hyeong In Ha, Myong Cheol Lim, Hyunsoon Cho","doi":"10.1200/CCI.23.00150","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>As the onset of cancer recurrence is not explicitly recorded in the electronic health record (EHR), a high volume of manual chart review is required to detect the cancer recurrence. This study aims to develop an automatic rule-based algorithm for detecting ovarian cancer (OC) recurrence on the basis of minimally preprocessed EHR data.</p><p><strong>Methods: </strong>The automatic rule-based recurrence detection algorithm (Auto-Recur), using notes on image reading (positron emission tomography-computed tomography [PET-CT], CT, magnetic resonance imaging [MRI]), biomarker (CA125), and treatment information (surgery, chemotherapy, radiotherapy), was developed to detect the first OC recurrence. Auto-Recur contains three single algorithms (images, biomarkers, treatments) and hybrid algorithms (combinations of the single algorithms). The performance of Auto-Recur was assessed using sensitivity, specificity, and accuracy of the recurrence time detected. The recurrence-free survival probabilities were estimated and compared with the retrospective chart review results.</p><p><strong>Results: </strong>The proposed Auto-Recur considerably reduced human resources and time; it saved approximately 1,340 days when scaled to 100,000 patients compared with the conventional retrospective chart review. The hybrid algorithm on the basis of a combination of image, biomarker, and treatment information was the most efficient (sensitivity: 93.4%, specificity: 97.4%) and precisely captured recurrence time (average time error: 8.5 days). The estimated 3-year recurrence-free survival probability (44%) was close to the estimates by the retrospective chart review (45%, log-rank <i>P</i> value = .894).</p><p><strong>Conclusion: </strong>Our rule-based algorithm effectively captured the first OC recurrence from large-scale EHR while closely approximating the recurrence-free survival estimates obtained by conventional retrospective chart reviews. The study findings facilitate large-scale EHR analysis, enhancing clinical research opportunities.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10927333/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of an Automatic Rule-Based Algorithm for the Detection of Ovarian Cancer Recurrence From Electronic Health Records.\",\"authors\":\"Sanghee Lee, Ji Hyun Kim, Hyeong In Ha, Myong Cheol Lim, Hyunsoon Cho\",\"doi\":\"10.1200/CCI.23.00150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>As the onset of cancer recurrence is not explicitly recorded in the electronic health record (EHR), a high volume of manual chart review is required to detect the cancer recurrence. This study aims to develop an automatic rule-based algorithm for detecting ovarian cancer (OC) recurrence on the basis of minimally preprocessed EHR data.</p><p><strong>Methods: </strong>The automatic rule-based recurrence detection algorithm (Auto-Recur), using notes on image reading (positron emission tomography-computed tomography [PET-CT], CT, magnetic resonance imaging [MRI]), biomarker (CA125), and treatment information (surgery, chemotherapy, radiotherapy), was developed to detect the first OC recurrence. Auto-Recur contains three single algorithms (images, biomarkers, treatments) and hybrid algorithms (combinations of the single algorithms). The performance of Auto-Recur was assessed using sensitivity, specificity, and accuracy of the recurrence time detected. The recurrence-free survival probabilities were estimated and compared with the retrospective chart review results.</p><p><strong>Results: </strong>The proposed Auto-Recur considerably reduced human resources and time; it saved approximately 1,340 days when scaled to 100,000 patients compared with the conventional retrospective chart review. The hybrid algorithm on the basis of a combination of image, biomarker, and treatment information was the most efficient (sensitivity: 93.4%, specificity: 97.4%) and precisely captured recurrence time (average time error: 8.5 days). The estimated 3-year recurrence-free survival probability (44%) was close to the estimates by the retrospective chart review (45%, log-rank <i>P</i> value = .894).</p><p><strong>Conclusion: </strong>Our rule-based algorithm effectively captured the first OC recurrence from large-scale EHR while closely approximating the recurrence-free survival estimates obtained by conventional retrospective chart reviews. The study findings facilitate large-scale EHR analysis, enhancing clinical research opportunities.</p>\",\"PeriodicalId\":51626,\"journal\":{\"name\":\"JCO Clinical Cancer Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10927333/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCO Clinical Cancer Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1200/CCI.23.00150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI.23.00150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Development of an Automatic Rule-Based Algorithm for the Detection of Ovarian Cancer Recurrence From Electronic Health Records.
Purpose: As the onset of cancer recurrence is not explicitly recorded in the electronic health record (EHR), a high volume of manual chart review is required to detect the cancer recurrence. This study aims to develop an automatic rule-based algorithm for detecting ovarian cancer (OC) recurrence on the basis of minimally preprocessed EHR data.
Methods: The automatic rule-based recurrence detection algorithm (Auto-Recur), using notes on image reading (positron emission tomography-computed tomography [PET-CT], CT, magnetic resonance imaging [MRI]), biomarker (CA125), and treatment information (surgery, chemotherapy, radiotherapy), was developed to detect the first OC recurrence. Auto-Recur contains three single algorithms (images, biomarkers, treatments) and hybrid algorithms (combinations of the single algorithms). The performance of Auto-Recur was assessed using sensitivity, specificity, and accuracy of the recurrence time detected. The recurrence-free survival probabilities were estimated and compared with the retrospective chart review results.
Results: The proposed Auto-Recur considerably reduced human resources and time; it saved approximately 1,340 days when scaled to 100,000 patients compared with the conventional retrospective chart review. The hybrid algorithm on the basis of a combination of image, biomarker, and treatment information was the most efficient (sensitivity: 93.4%, specificity: 97.4%) and precisely captured recurrence time (average time error: 8.5 days). The estimated 3-year recurrence-free survival probability (44%) was close to the estimates by the retrospective chart review (45%, log-rank P value = .894).
Conclusion: Our rule-based algorithm effectively captured the first OC recurrence from large-scale EHR while closely approximating the recurrence-free survival estimates obtained by conventional retrospective chart reviews. The study findings facilitate large-scale EHR analysis, enhancing clinical research opportunities.