Carla L Archibald, David M Summers, Erin M Graham, Brett A Bryan
{"title":"CMIP6 气候情景下澳大利亚动植物栖息地适宜性地图。","authors":"Carla L Archibald, David M Summers, Erin M Graham, Brett A Bryan","doi":"10.1093/gigascience/giae002","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Spatial information about the location and suitability of areas for native plant and animal species under different climate futures is an important input to land use and conservation planning and management. Australia, renowned for its abundant species diversity and endemism, often relies on modeled data to assess species distributions due to the country's vast size and the challenges associated with conducting on-ground surveys on such a large scale. The objective of this article is to develop habitat suitability maps for Australian flora and fauna under different climate futures.</p><p><strong>Results: </strong>Using MaxEnt, we produced Australia-wide habitat suitability maps under RCP2.6-SSP1, RCP4.5-SSP2, RCP7.0-SSP3, and RCP8.5-SSP5 climate futures for 1,382 terrestrial vertebrates and 9,251 vascular plants vascular plants at 5 km2 for open access. This represents 60% of all Australian mammal species, 77% of amphibian species, 50% of reptile species, 71% of bird species, and 44% of vascular plant species. We also include tabular data, which include summaries of total quality-weighted habitat area of species under different climate scenarios and time periods.</p><p><strong>Conclusions: </strong>The spatial data supplied can help identify important and sensitive locations for species under various climate futures. Additionally, the supplied tabular data can provide insights into the impacts of climate change on biodiversity in Australia. These habitat suitability maps can be used as input data for landscape and conservation planning or species management, particularly under different climate change scenarios in Australia.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"13 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939329/pdf/","citationCount":"0","resultStr":"{\"title\":\"Habitat suitability maps for Australian flora and fauna under CMIP6 climate scenarios.\",\"authors\":\"Carla L Archibald, David M Summers, Erin M Graham, Brett A Bryan\",\"doi\":\"10.1093/gigascience/giae002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Spatial information about the location and suitability of areas for native plant and animal species under different climate futures is an important input to land use and conservation planning and management. Australia, renowned for its abundant species diversity and endemism, often relies on modeled data to assess species distributions due to the country's vast size and the challenges associated with conducting on-ground surveys on such a large scale. The objective of this article is to develop habitat suitability maps for Australian flora and fauna under different climate futures.</p><p><strong>Results: </strong>Using MaxEnt, we produced Australia-wide habitat suitability maps under RCP2.6-SSP1, RCP4.5-SSP2, RCP7.0-SSP3, and RCP8.5-SSP5 climate futures for 1,382 terrestrial vertebrates and 9,251 vascular plants vascular plants at 5 km2 for open access. This represents 60% of all Australian mammal species, 77% of amphibian species, 50% of reptile species, 71% of bird species, and 44% of vascular plant species. We also include tabular data, which include summaries of total quality-weighted habitat area of species under different climate scenarios and time periods.</p><p><strong>Conclusions: </strong>The spatial data supplied can help identify important and sensitive locations for species under various climate futures. Additionally, the supplied tabular data can provide insights into the impacts of climate change on biodiversity in Australia. These habitat suitability maps can be used as input data for landscape and conservation planning or species management, particularly under different climate change scenarios in Australia.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":\"13 \",\"pages\":\"\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939329/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giae002\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Habitat suitability maps for Australian flora and fauna under CMIP6 climate scenarios.
Background: Spatial information about the location and suitability of areas for native plant and animal species under different climate futures is an important input to land use and conservation planning and management. Australia, renowned for its abundant species diversity and endemism, often relies on modeled data to assess species distributions due to the country's vast size and the challenges associated with conducting on-ground surveys on such a large scale. The objective of this article is to develop habitat suitability maps for Australian flora and fauna under different climate futures.
Results: Using MaxEnt, we produced Australia-wide habitat suitability maps under RCP2.6-SSP1, RCP4.5-SSP2, RCP7.0-SSP3, and RCP8.5-SSP5 climate futures for 1,382 terrestrial vertebrates and 9,251 vascular plants vascular plants at 5 km2 for open access. This represents 60% of all Australian mammal species, 77% of amphibian species, 50% of reptile species, 71% of bird species, and 44% of vascular plant species. We also include tabular data, which include summaries of total quality-weighted habitat area of species under different climate scenarios and time periods.
Conclusions: The spatial data supplied can help identify important and sensitive locations for species under various climate futures. Additionally, the supplied tabular data can provide insights into the impacts of climate change on biodiversity in Australia. These habitat suitability maps can be used as input data for landscape and conservation planning or species management, particularly under different climate change scenarios in Australia.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.