[线粒体动力学的调控机制及其在肾脏病理生理学中的新作用]。

Q3 Medicine
生理学报 Pub Date : 2024-02-25
Zi-Xuan Tan, Wu-Zheng Zhu
{"title":"[线粒体动力学的调控机制及其在肾脏病理生理学中的新作用]。","authors":"Zi-Xuan Tan, Wu-Zheng Zhu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are dynamically changing organelles that maintain stable mitochondrial morphology, number, and function through constant fusion and division, a process known as mitochondrial dynamics, which is an important mechanism for mitochondrial quality control. Excessive fusion and division of mitochondria can lead to a homeostatic imbalance in mitochondrial dynamics, causing mitochondrial dysfunction, leading to cellular damage, and even death. The physiological functions of the kidney are mainly powered by mitochondria, and homeostatic imbalance in mitochondrial dynamics affects mitochondrial function and is closely related to renal diseases such as acute kidney injury and diabetic nephropathy. This article reviews the regulation of mitochondrial kinetics, how imbalances in mitochondrial kinetic homeostasis affect mitochondrial injury, and the impact of mitochondrial injury on renal pathophysiology, in order to improve understanding and knowledge of the role of mitochondria in renal disease.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"76 1","pages":"148-160"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Regulatory mechanisms of mitochondrial dynamics and its emerging role in renal pathophysiology].\",\"authors\":\"Zi-Xuan Tan, Wu-Zheng Zhu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria are dynamically changing organelles that maintain stable mitochondrial morphology, number, and function through constant fusion and division, a process known as mitochondrial dynamics, which is an important mechanism for mitochondrial quality control. Excessive fusion and division of mitochondria can lead to a homeostatic imbalance in mitochondrial dynamics, causing mitochondrial dysfunction, leading to cellular damage, and even death. The physiological functions of the kidney are mainly powered by mitochondria, and homeostatic imbalance in mitochondrial dynamics affects mitochondrial function and is closely related to renal diseases such as acute kidney injury and diabetic nephropathy. This article reviews the regulation of mitochondrial kinetics, how imbalances in mitochondrial kinetic homeostasis affect mitochondrial injury, and the impact of mitochondrial injury on renal pathophysiology, in order to improve understanding and knowledge of the role of mitochondria in renal disease.</p>\",\"PeriodicalId\":7134,\"journal\":{\"name\":\"生理学报\",\"volume\":\"76 1\",\"pages\":\"148-160\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生理学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生理学报","FirstCategoryId":"1087","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

线粒体是动态变化的细胞器,通过不断的融合和分裂来维持线粒体形态、数量和功能的稳定,这一过程被称为线粒体动力学,是线粒体质量控制的重要机制。线粒体过度融合和分裂会导致线粒体动态平衡失调,引起线粒体功能障碍,导致细胞损伤,甚至死亡。肾脏的生理功能主要由线粒体提供动力,线粒体动态平衡失调会影响线粒体功能,与急性肾损伤、糖尿病肾病等肾脏疾病密切相关。本文综述了线粒体动力学的调控、线粒体动力学平衡失调如何影响线粒体损伤以及线粒体损伤对肾脏病理生理学的影响,以期增进人们对线粒体在肾脏疾病中作用的理解和认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Regulatory mechanisms of mitochondrial dynamics and its emerging role in renal pathophysiology].

Mitochondria are dynamically changing organelles that maintain stable mitochondrial morphology, number, and function through constant fusion and division, a process known as mitochondrial dynamics, which is an important mechanism for mitochondrial quality control. Excessive fusion and division of mitochondria can lead to a homeostatic imbalance in mitochondrial dynamics, causing mitochondrial dysfunction, leading to cellular damage, and even death. The physiological functions of the kidney are mainly powered by mitochondria, and homeostatic imbalance in mitochondrial dynamics affects mitochondrial function and is closely related to renal diseases such as acute kidney injury and diabetic nephropathy. This article reviews the regulation of mitochondrial kinetics, how imbalances in mitochondrial kinetic homeostasis affect mitochondrial injury, and the impact of mitochondrial injury on renal pathophysiology, in order to improve understanding and knowledge of the role of mitochondria in renal disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
生理学报
生理学报 Medicine-Medicine (all)
CiteScore
1.20
自引率
0.00%
发文量
4820
期刊介绍: Acta Physiologica Sinica (APS) is sponsored by the Chinese Association for Physiological Sciences and Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences (CAS), and is published bimonthly by the Science Press, China. APS publishes original research articles in the field of physiology as well as research contributions from other biomedical disciplines and proceedings of conferences and symposia of physiological sciences. Besides “Original Research Articles”, the journal also provides columns as “Brief Review”, “Rapid Communication”, “Experimental Technique”, and “Letter to the Editor”. Articles are published in either Chinese or English according to authors’ submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信