双侧四元数傅里叶变换和均匀 Lipschitz 空间的博厄斯类型结果

IF 0.7 4区 数学 Q2 MATHEMATICS
{"title":"双侧四元数傅里叶变换和均匀 Lipschitz 空间的博厄斯类型结果","authors":"","doi":"10.1007/s11785-024-01491-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>For the quaternion algebra <span> <span>\\({\\mathbb {H}}\\)</span> </span> and <span> <span>\\(f:\\mathbb R^2\\rightarrow {\\mathbb {H}}\\)</span> </span>, we consider a two-sided quaternion Fourier transform <span> <span>\\(\\widehat{f}\\)</span> </span>. Necessary and sufficient conditions for <em>f</em> to belong to generalized uniform Lipschitz spaces are given in terms of behavior of <span> <span>\\(\\widehat{f}\\)</span> </span>.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"10 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boas Type Results for Two-Sided Quaternion Fourier Transform and Uniform Lipschitz Spaces\",\"authors\":\"\",\"doi\":\"10.1007/s11785-024-01491-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>For the quaternion algebra <span> <span>\\\\({\\\\mathbb {H}}\\\\)</span> </span> and <span> <span>\\\\(f:\\\\mathbb R^2\\\\rightarrow {\\\\mathbb {H}}\\\\)</span> </span>, we consider a two-sided quaternion Fourier transform <span> <span>\\\\(\\\\widehat{f}\\\\)</span> </span>. Necessary and sufficient conditions for <em>f</em> to belong to generalized uniform Lipschitz spaces are given in terms of behavior of <span> <span>\\\\(\\\\widehat{f}\\\\)</span> </span>.</p>\",\"PeriodicalId\":50654,\"journal\":{\"name\":\"Complex Analysis and Operator Theory\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Analysis and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01491-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01491-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 对于四元数代数 ({\mathbb {H}}\)和 (f:\mathbb R^2\rightarrow {\mathbb {H}}\),我们考虑一个双面四元数傅里叶变换 (\\widehat{f}\)。根据 \(\widehat{f}\) 的行为给出了 f 属于广义均匀 Lipschitz 空间的必要条件和充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boas Type Results for Two-Sided Quaternion Fourier Transform and Uniform Lipschitz Spaces

Abstract

For the quaternion algebra \({\mathbb {H}}\) and \(f:\mathbb R^2\rightarrow {\mathbb {H}}\) , we consider a two-sided quaternion Fourier transform \(\widehat{f}\) . Necessary and sufficient conditions for f to belong to generalized uniform Lipschitz spaces are given in terms of behavior of \(\widehat{f}\) .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信