论扰动算子和瑞利薛定谔系数

IF 0.7 4区 数学 Q2 MATHEMATICS
Marcus Carlsson, Olof Rubin
{"title":"论扰动算子和瑞利薛定谔系数","authors":"Marcus Carlsson, Olof Rubin","doi":"10.1007/s11785-024-01482-9","DOIUrl":null,"url":null,"abstract":"<p>Let <i>A</i> and <i>E</i> be self-adjoint matrices or operators on <span>\\(\\ell ^2({{\\mathbb {N}}})\\)</span>, where <i>A</i> is fixed and <i>E</i> is a small perturbation. We study how the eigenvalues of <span>\\(A+E\\)</span> depend on <i>E</i>, with the aim of obtaining second order formulas that are explicitly computable in terms of the spectral decomposition of <i>A</i> and a certain block decomposition of <i>E</i>. In particular we extend the classical Rayleigh-Schrödinger formulas for the one-parameter perturbation <span>\\(A+tE\\)</span> where <span>\\(t\\in {{\\mathbb {R}}}\\)</span> varies and <i>E</i> is held fixed, by dropping <i>t</i> and considering <i>E</i> as the variable.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"53 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Perturbation of Operators and Rayleigh-Schrödinger Coefficients\",\"authors\":\"Marcus Carlsson, Olof Rubin\",\"doi\":\"10.1007/s11785-024-01482-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>A</i> and <i>E</i> be self-adjoint matrices or operators on <span>\\\\(\\\\ell ^2({{\\\\mathbb {N}}})\\\\)</span>, where <i>A</i> is fixed and <i>E</i> is a small perturbation. We study how the eigenvalues of <span>\\\\(A+E\\\\)</span> depend on <i>E</i>, with the aim of obtaining second order formulas that are explicitly computable in terms of the spectral decomposition of <i>A</i> and a certain block decomposition of <i>E</i>. In particular we extend the classical Rayleigh-Schrödinger formulas for the one-parameter perturbation <span>\\\\(A+tE\\\\)</span> where <span>\\\\(t\\\\in {{\\\\mathbb {R}}}\\\\)</span> varies and <i>E</i> is held fixed, by dropping <i>t</i> and considering <i>E</i> as the variable.</p>\",\"PeriodicalId\":50654,\"journal\":{\"name\":\"Complex Analysis and Operator Theory\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Analysis and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01482-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01482-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 A 和 E 是 \ell ^2({{\mathbb {N}})\) 上的自交矩阵或算子,其中 A 是固定的,E 是一个小扰动。我们研究了 \(A+E\) 的特征值是如何依赖于 E 的,目的是通过 A 的谱分解和 E 的某个块分解得到可明确计算的二阶公式。特别是,我们通过舍弃 t 并将 E 视为变量,扩展了单参数扰动 \(A+tE\) 的经典瑞利-薛定谔公式,其中 \(t\in {{\mathbb {R}}\) 变化且 E 固定不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Perturbation of Operators and Rayleigh-Schrödinger Coefficients

Let A and E be self-adjoint matrices or operators on \(\ell ^2({{\mathbb {N}}})\), where A is fixed and E is a small perturbation. We study how the eigenvalues of \(A+E\) depend on E, with the aim of obtaining second order formulas that are explicitly computable in terms of the spectral decomposition of A and a certain block decomposition of E. In particular we extend the classical Rayleigh-Schrödinger formulas for the one-parameter perturbation \(A+tE\) where \(t\in {{\mathbb {R}}}\) varies and E is held fixed, by dropping t and considering E as the variable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信