{"title":"用于病毒性肺病分类的迁移学习融合和堆叠自动编码器","authors":"","doi":"10.1007/s00354-024-00247-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The objective of this research endeavor is to identify an effective model for the classification of multiple viral respiratory diseases, encompassing COVID-19. The feature extraction phase from medical images constitutes a formidable challenge in achieving optimal disease classification outcomes. In this work, a selection of the best models among several popular transfer learning (TL) models is realized. The concatenation of the best models for better features extraction is used; the deep learning (DL) methods for deep features extraction and deep data reduction were applied for an optimal classification. This paper includes two studies, the first was applied to binary classification (COVID-19/Normal) and the second is concerned with multi-classification (COVID-19/Normal/VPneumonia). The validation of the proposed approaches is made on a big datasets: (i) binary classification 4800 COVID-19 and 4803 Normal images for the two cases Chest X-Ray (CXR) and Computed Tomography (CT) scans, and (ii) multi-class classification 3931 COVID-19, 3931 Normal, and 4273 Viral Pneumonia (VP) images for CXR. This study hypothesized that the proposed approach might be able to extract specific graphical features of COVID-19 and provide a clinical diagnosis ahead of the pathogenic test. Experimental results achieved in binary classification a high: Val_accuracy = 99.87% and 98.41%, Test_accuracy = 100% and 99.21%, Test_time = 0.002 s and 0.008 s per image for CT scans and CXR images, respectively, and in multi-classification: Val_accuracy = 97.48%, Test_accuracy = 92.96% with Test_time = 0.006 s per image for CXR images.</p>","PeriodicalId":54726,"journal":{"name":"New Generation Computing","volume":"22 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer Learning Fusion and Stacked Auto-encoders for Viral Lung Disease Classification\",\"authors\":\"\",\"doi\":\"10.1007/s00354-024-00247-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>The objective of this research endeavor is to identify an effective model for the classification of multiple viral respiratory diseases, encompassing COVID-19. The feature extraction phase from medical images constitutes a formidable challenge in achieving optimal disease classification outcomes. In this work, a selection of the best models among several popular transfer learning (TL) models is realized. The concatenation of the best models for better features extraction is used; the deep learning (DL) methods for deep features extraction and deep data reduction were applied for an optimal classification. This paper includes two studies, the first was applied to binary classification (COVID-19/Normal) and the second is concerned with multi-classification (COVID-19/Normal/VPneumonia). The validation of the proposed approaches is made on a big datasets: (i) binary classification 4800 COVID-19 and 4803 Normal images for the two cases Chest X-Ray (CXR) and Computed Tomography (CT) scans, and (ii) multi-class classification 3931 COVID-19, 3931 Normal, and 4273 Viral Pneumonia (VP) images for CXR. This study hypothesized that the proposed approach might be able to extract specific graphical features of COVID-19 and provide a clinical diagnosis ahead of the pathogenic test. Experimental results achieved in binary classification a high: Val_accuracy = 99.87% and 98.41%, Test_accuracy = 100% and 99.21%, Test_time = 0.002 s and 0.008 s per image for CT scans and CXR images, respectively, and in multi-classification: Val_accuracy = 97.48%, Test_accuracy = 92.96% with Test_time = 0.006 s per image for CXR images.</p>\",\"PeriodicalId\":54726,\"journal\":{\"name\":\"New Generation Computing\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Generation Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00354-024-00247-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Generation Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00354-024-00247-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Transfer Learning Fusion and Stacked Auto-encoders for Viral Lung Disease Classification
Abstract
The objective of this research endeavor is to identify an effective model for the classification of multiple viral respiratory diseases, encompassing COVID-19. The feature extraction phase from medical images constitutes a formidable challenge in achieving optimal disease classification outcomes. In this work, a selection of the best models among several popular transfer learning (TL) models is realized. The concatenation of the best models for better features extraction is used; the deep learning (DL) methods for deep features extraction and deep data reduction were applied for an optimal classification. This paper includes two studies, the first was applied to binary classification (COVID-19/Normal) and the second is concerned with multi-classification (COVID-19/Normal/VPneumonia). The validation of the proposed approaches is made on a big datasets: (i) binary classification 4800 COVID-19 and 4803 Normal images for the two cases Chest X-Ray (CXR) and Computed Tomography (CT) scans, and (ii) multi-class classification 3931 COVID-19, 3931 Normal, and 4273 Viral Pneumonia (VP) images for CXR. This study hypothesized that the proposed approach might be able to extract specific graphical features of COVID-19 and provide a clinical diagnosis ahead of the pathogenic test. Experimental results achieved in binary classification a high: Val_accuracy = 99.87% and 98.41%, Test_accuracy = 100% and 99.21%, Test_time = 0.002 s and 0.008 s per image for CT scans and CXR images, respectively, and in multi-classification: Val_accuracy = 97.48%, Test_accuracy = 92.96% with Test_time = 0.006 s per image for CXR images.
期刊介绍:
The journal is specially intended to support the development of new computational and cognitive paradigms stemming from the cross-fertilization of various research fields. These fields include, but are not limited to, programming (logic, constraint, functional, object-oriented), distributed/parallel computing, knowledge-based systems, agent-oriented systems, and cognitive aspects of human embodied knowledge. It also encourages theoretical and/or practical papers concerning all types of learning, knowledge discovery, evolutionary mechanisms, human cognition and learning, and emergent systems that can lead to key technologies enabling us to build more complex and intelligent systems. The editorial board hopes that New Generation Computing will work as a catalyst among active researchers with broad interests by ensuring a smooth publication process.