{"title":"古典列阵的格尔芬-基里洛夫维度和标量广义维尔马模块的可重复性","authors":"Zhan Qiang Bai, Jing Jiang","doi":"10.1007/s10114-024-2676-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathfrak{g}\\)</span> be a classical complex simple Lie algebra and <span>\\(\\mathfrak{q}\\)</span> be a parabolic subalgebra. Let <i>M</i> be a generalized Verma module induced from a one dimensional representation of <span>\\(\\mathfrak{q}\\)</span>. Such <i>M</i> is called a scalar generalized Verma module. In this paper, we will determine the reducibility of scalar generalized Verma modules associated to maximal parabolic subalgebras by computing explicitly the Gelfand–Kirillov dimension of the corresponding highest weight modules.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 3","pages":"658 - 706"},"PeriodicalIF":0.8000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gelfand–Kirillov Dimension and Reducibility of Scalar Generalized Verma Modules for Classical Lie Algebras\",\"authors\":\"Zhan Qiang Bai, Jing Jiang\",\"doi\":\"10.1007/s10114-024-2676-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathfrak{g}\\\\)</span> be a classical complex simple Lie algebra and <span>\\\\(\\\\mathfrak{q}\\\\)</span> be a parabolic subalgebra. Let <i>M</i> be a generalized Verma module induced from a one dimensional representation of <span>\\\\(\\\\mathfrak{q}\\\\)</span>. Such <i>M</i> is called a scalar generalized Verma module. In this paper, we will determine the reducibility of scalar generalized Verma modules associated to maximal parabolic subalgebras by computing explicitly the Gelfand–Kirillov dimension of the corresponding highest weight modules.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"40 3\",\"pages\":\"658 - 706\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-024-2676-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2676-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 \(\mathfrak{g}\) 是一个经典复简单李代数,而 \(\mathfrak{q}\) 是一个抛物线子代数。让 M 是从 \(\mathfrak{q}\) 的一维表示诱导出来的广义维尔马模块。这样的 M 称为标量广义 Verma 模块。在本文中,我们将通过明确计算相应最高权重模块的 Gelfand-Kirillov 维度,来确定与最大抛物面子代数相关的标量广义 Verma 模块的可还原性。
Gelfand–Kirillov Dimension and Reducibility of Scalar Generalized Verma Modules for Classical Lie Algebras
Let \(\mathfrak{g}\) be a classical complex simple Lie algebra and \(\mathfrak{q}\) be a parabolic subalgebra. Let M be a generalized Verma module induced from a one dimensional representation of \(\mathfrak{q}\). Such M is called a scalar generalized Verma module. In this paper, we will determine the reducibility of scalar generalized Verma modules associated to maximal parabolic subalgebras by computing explicitly the Gelfand–Kirillov dimension of the corresponding highest weight modules.
期刊介绍:
Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.